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ABSTRACT
Sufficient functional repair of damaged peripheral nerves is a big clinical challenge in terms of long-lasting 
morbidity, disability, and economic costs. Nerve damage after radical prostatectomy is the most common 
cause of erectile dysfunction (ED). In recent years, low-intensity extracorporeal shockwave therapy (Li-
ESWT) has been explored to improve the outcomes of peripheral nerve repair and regeneration. Research 
indicated that application of Li-ESWT after nerve surgery promoted nerve regeneration and improved the 
functional outcomes, underlined the mechanisms related to increase of neurotrophic factors, Schwann 
cells activation, and cellular signaling activation for cell activation and mitosis induced by Li-ESWT. We 
searched PubMed for articles related to research on these topics in both in vitro and in vivo animal models 
and found numerous studies suggesting that the application Li-ESWT could be a novel treatment for ED 
induced by nerve injury and other disease related to nerve injury.

Keywords: Activation; cellular signaling; low-intensity extracorporeal shockwave therapy; neurotrophic 
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Introduction

The efficient functional repair of damaged 
peripheral nerves is a big clinical challenge 
because they are vulnerable to injuries from 
crushing, stretching, compression, and avul-
sion and may result in long-lasting morbidity, 
disability, and economic costs.[1-3] The causes 
of peripheral nerve injury could be traffic ac-
cidents, tumor damage, viral infections, side 
effects of neurosurgery, and so on.[4] Injuries to 
the peripheral nerves can also occur in multiple 
clinical scenarios. For example, prostate cancer 
surgery often damages the corpus cavernous 
nerve, even with nerve-sparing techniques,[5] 
which eventually leads to erectile dysfunction 
(ED). Radical prostatectomy is the gold stan-
dard for early-stage prostate cancer but is also 
the most common cause of ED. The prevalence 
of ED is approximately 14%–90% because of 
nerve damage after radical prostatectomy.[6]

As the peripheral nervous system is capable of 
regeneration, injuries are usually reconstructed 
by primary repair. However, multiple difficul-

ties exist with the process of regeneration over 
long distances, such as following proximal le-
sions or nerve gaps. In these instances, the in-
jury repair needs artificial conduits or the gold 
standard autologous nerve grafts. The nerve 
gap and slow axonal regeneration present a 
limiting factor for efficient reinnervation.[7-10] 
However, the treatment of nerve injury after 
radical prostatectomy is still limited,[11] and the 
prognosis is poor if treatment is delayed be-
cause the functioning nerves are necessary for 
erections. One of the approaches to accelerate 
peripheral nerve regeneration is to stimulate 
the physiological processes that occur after 
nerve injury.

As slow axonal regeneration is the unsolved 
key issue limiting the functional outcome af-
ter nerve surgery, many methods, including 
various forms of external physical stimulation 
(electric stimulation,[12] laser stimulation,[13] 
magnetic field,[14] and so on) and biological 
therapy (administration of neurotrophic fac-
tors,[15] vitamins,[16] and medications[17]), have 
been proved to enhance the nerve regeneration 
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although there are some limitations to their clinical application, 
and a novel and effective therapeutic approach to stimulate the 
physiological processes is needed.

Recently, low-intensity extracorporeal shockwave therapy (Li-
ESWT) has been successfully used in the field of regenerative 
medicine after its original introduction as urological lithotripsy.
[18] In preclinical and clinical trials, Li-ESWT is currently ap-
plied to a wide range of medical indications, such as wound 
healing,[19] musculoskeletal disorders,[20] bone healing distur-
bances,[21,22] painful scars,[23] spastic hypertonia,[24] ischemic 
heart diseases,[25], and so on. More recently, studies focusing 
on the influence of ESWT on peripheral nerve proved that Li-
ESWT could promote peripheral nerve regeneration after injury.
[26,27] Although no clinical studies exist regarding the same, sev-
eral experimental studies have investigated the use of Li-ESWT 
as an effective treatment after peripheral nerve repair and dem-
onstrated very good outcomes. This study presents a systematic 
review of the available preclinical literature of the reported ef-
fects of Li-ESWT in penile and peripheral nerve regeneration 
and its potential clinical applications.

Pathogenesis of nerve injury and regeneration
Peripheral nerves are particularly vulnerable to injuries, and 
the peripheral nervous system has the ability to regenerate in 
contrast to the central nervous system. The pathophysiology of 
peripheral nerve injuries and the mechanisms involved in spon-
taneous regeneration are relatively well understood, and there is 
some evidence that a conditioning lesion primes the peripheral 
nerve for regeneration;[28] however, the functional recovery is 
often incomplete.

The process of spontaneous regeneration starts with the initial 
response to injury, such as after complete nerve transection.[29] 
After nerve transection, the distal nerve ending undergoes Wal-
lerian degeneration, which is a unique and structured form of 
axon degeneration.[30] At first, axonal and myelin debris are pro-
duced, and resident macrophages in the nerve tissue then dif-
ferentiate into activated macrophages to phagocytose the cellu-
lar debris. Activation of messenger-ribonucleic acid translation 
(mRNA) is observed in the proximal stumps in the axons, which 

stimulates the formation of the protein complex importin-phos-
phorylated extracellular regulated protein kinase 1/2 vimentin. 
This complex is transported by the motor protein dynein in a 
retrograde direction to the cell body, and this signal informs the 
neuron of the axonal damage.[31] The neuron of soma then reacts 
by breaking up Nissl bodies which promotes protein synthesis 
and peripheral displacement.[29,32] Only a few hours after the 
nerve injury, the growing axonal extremity extends filopodia, 
which are randomly oriented at first but gain unidirectionality 
thereafter, and the proximal stump sprouts processes that sample 
the environment for neurotrophic factors to guide them to their 
target.[33-35]

Successful peripheral nerve regeneration after injury relies on 
both injured axons and non-neuronal cells, including Schwann 
cells (SCs), endoneurial fibroblasts, and macrophages, which 
produce a supportive microenvironment for allowing success-
ful regrowth of the proximal nerve fiber ending.[36] SCs play an 
important role in the axonal regeneration and can secrete chemo-
kines, such as monocyte chemoattractant protein-1, which leads 
to the recruitment of circulating macrophages for the removal of 
myelin and axonal debris.[37,38] SCs produce neurite-promoting 
proteins, such as fibronectin, laminin, tenascin, heparin sulfate, 
and collagen, which are incorporated into the extracellular ma-
trix that is lost because of injury.[39] The proliferating SCs are 
aligned in columns forming “bands of Büngner” that form a 
physical guide for new axonal regrowth.[40,41] SCs express cell 
adhesion molecules that are important in interacting with matrix 
proteins that will modulate the axon outgrowth and path find-
ing.[39,42,43] SCs also express neurotrophic factors, such as ciliary 
neurotrophic factor, brain-derived neurotrophic factor, glial cell 
line-derived neurotrophic factor, and nerve growth factor, which 
can increase the cell survival and promote nerve regeneration.
[36] Recently, it was reported that SCs regulate peripheral nerve 
regeneration by secreting exosomes.[44]

Physical characteristics of shockwave
The shockwave is defined as a sonic pulse, initially spiking to 
a high peak pressure of up to 100 MPa in 10 ns and then fall-
ing to a negative pressure of about 5–10 MPa duration up to 5 
μs, thought to induce biological reaction to the targeted tissues 
by the high initial pressure, and proceeded by a tensile force 
and mechanical stimulation.[45] According to the energy level, 
the ESWT can be divided into high-intensity ESWT (Hi-ES-
WT) and Li-ESWT energy categories. Although both treatment 
modalities are therapeutic, the Hi-ESWT is typically adminis-
tered for destruction of solid aggregations inside or outside tis-
sues,[46,47] whereas Li-ESWT treatment is used for tissue repair 
and regeneration.[48]

The history of shockwaves as a therapeutic approach is rela-
tively short. In the 1980s,[49] shockwave was first used for de-
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•	 Low-intensity extracorporeal shockwave therapy (Li-ESWT) 
improved peripheral nerve repair and regeneration.

•	 Li-ESWT exerts its biological effects by increasing neuro-
trophic factors, Schwann cell activation, and cellular signaling 
activation.

•	 Li-ESWT could be a novel treatment for nerve injury-induced 
erectile dysfunction and other conditions related to nerve in-
jury.
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struction of kidney and urinary stones. In recent years, Li-ESWT 
has become a widely utilized therapeutic tool in regenerative 
medicine. The positive effects of Li-ESWT on peripheral nerve 
regeneration have also been reported recently,[50,51] whereas the 
Hi-ESWT may cause myelin sheath damage histologically and 
further functional damage in horses and dogs.[52,53]

In the field of ED treatment, Li-ESWT has shown positive 
therapeutic effect mainly in non-neurogenic ED in the recent 
years,[54-57] but the applicability of Li-ESWT in neurogenic ED, 
such as that occurring in postradical prostatectomy (post-RP 
ED) because of nerve damage, is questionable.[55] However, 
some studies showed that Li-ESWT might increase the rate of 
blood flow and regenerate the nervous tissue when applied to 
penile tissue[58] and can provide a positive effect to neurogenic 
ED with nerve damage, such as post-RP ED.[59,60] However, the 
potential mechanisms producing these biological effects are still 
unclear and need further investigation.

Effect of ESWT on peripheral nerve regeneration
As mentioned earlier, ESWT with different levels of energy 
has different therapeutic effects. Some studies have found that 
ESWT could cause damage to the peripheral nerve, and the 
safety of ESWT was therefore challenged. In 2002, Wang et 
al.[52] found that Hi-ESWT(0.47 mJ/mm2) can cause injury to the 
nerve and lead to mild nerve bundle swelling in a dog’s femoral 
nerve. Wu et al.[61] used the sciatic nerve of rats to investigate the 
effects of varying intensities of ESWT on the peripheral nerve 
and found moderate decrease in the motor nerve conduction ve-
locity and damage to the myelin sheath of the large-diameter 
myelinated fibers after all levels of intensity of ESWT were ap-
plied. The effect was larger and longer in duration in the high-
intensity group, and all the changes were reversible.

Overall, beside the therapeutic effect, there are some evidences 
to prove that ESWT can cause reversible damage to the periph-
eral nerve in an intensity-dependent manner and that the Li-ES-
WT is a safe method to treat nerve injury. Thus, in this review, 
we focused on the effect of Li-ESWT on peripheral nerve re-
generation.

Dosage effect of Li-ESWT on the peripheral nerve
Evidence suggests that Li-ESWT less than 900 pulses combined 
with a flux density of 0.08 mJ/mm2 should be safe, and Li-ES-
WT more than 900 pulses could induce damage to the peripheral 
nerves.

In 2001, Ohtori et al.[62] found that 1,000 pulses of shockwaves 
(0.08 mJ/mm2, 2.4 Hz) can cause degeneration of the sensory 
nerve fibers and endings followed by reinnervation of the af-
fected skin areas. In 2006, Takahashi et al.[63] found that a sec-
ond application of the same dose of Li-ESWT had a cumulative 

effect on the treated nerves, leading to delayed reinnervation, 
which can be reversed within 2 weeks. In 2008, Wu et al.[61,64] 
manifested that application of 2,000 pulses of Li-ESWT (0.08 
mJ/mm2) impaired the electrophysiological conduction param-
eters in the sciatic nerve of rats, which could be reversed in 1 
week. In 2012, Hausner et al.[26] found that the sciatic nerves of 
rats treated with different dosages of Li-ESWT (0.1 mJ/mm2) 
have different effects. The result showed that 300 pulses did not 
induce axonal degeneration 1 week after ESWT, whereas treat-
ment with 900 and 1,500 pulses resulted in moderate and severe 
degeneration, respectively. Although Li-ESWT is safer than Hi-
ESWT, to treat nerves, the dosage should be controlled to avoid 
damage to the nerves.

Li-ESWT promotes peripheral nerve regeneration
Despite these well-known effects of Li-ESWT on many kinds of 
cells and tissues, including peripheral nerves, little was known 
about its effects on either intact or damaged nerve tissue, which 
represents the effects on nerve regeneration till very recently. 
There are some studies investigating whether and how Li-ES-
WT influences the regeneration of damaged peripheral nerves.

In 2012, Hausner et al.[26] used rats’ sciatic nerve defect model 
with an 8-mm long right side sciatic nerve reversed homotopic 
autologous nerve transplantation to explore the effect of Li-ES-
WT (3 Hz, 0.1 mJ/mm2, 300 pulses) on nerve regeneration. They 
found that 3 weeks after surgery, the morphological data pre-
sented faster elongation of the myelinated axons and far more 
regenerating myelinated fibers in the Li-ESWT nerves than in 
the control nerves. The morphological improvement correlated 
with the electrophysiological result that nerve action potentials 
with considerable amplitudes could be evoked at 3 weeks in the 
sciatic nerve of the animals treated with Li-ESWT but not in 
the nerves of the control animals. After the regenerating nerves 
reached their peripheral targets, such as skeletal muscles, they 
reinnervated the targets and then produced a functional reinner-
vation at 6 to 8 weeks after surgery. Overall, the results showed 
that Li-ESWT might improve the functional recovery in the ini-
tial phase of regeneration after the sciatic nerve injury in rats. 
They also assumed that Li-ESWT improved reorganization of 
the injured nerves owing to faster clearance, fewer fibroblasts, 
and less endoneural collagen, which provided a lower degree of 
endoneural scarring and fibrocytic activity.

In 2013, Lee and Cho[65] used rats’ sciatic nerve-crushing dam-
age model to explore the effect of Li-ESWT (3 Hz, 0.09 mJ/
mm2, 300 pulses) on muscle weight and function. They found 
that 14 days after surgery, the Li-ESWT group showed a signifi-
cant increase in the sciatic functional index score and reduced 
level of muscle atrophy compared with those of the control 
group. According to their results, they assumed that although 
Li-ESWT stimulates regeneration and reordering of the injured 
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nerves, activates the conjunction of the muscle and neurons, and 
increases the functional activity, it also counteracts the changes 
in the nerve damage, including the inhibition of muscle contrac-
tion and decrease of protein synthesis to reduce muscle atrophy.

In 2015, Lee and Kim[51] used a rat model to explore the effect 
of Li-ESWT (3 Hz, 0.09 mJ/mm2, 300 pulses) on functional re-
covery and neurotrophin-3 (NT-3) expression in the spinal cord 
after sciatic nerve-crushing damage. They found that Li-ESWT 
can promote the expression of NT-3 compared with the control 
group, which could facilitate the activity of macrophages and 
SCs, which affects the survival and regeneration of neurons. 
This, finally, resulted in a continuous and statistically significant 
increase in the functional activity in the Li-ESWT group com-
pared with that of the control group.

Effect of Li-ESWT on neurogenic ED
In recent years, the therapeutic effect of Li-ESWT has been stud-
ied mainly in non-neurogenic ED, and the effect is primarily re-
lated to the stimulation of cell proliferation, tissue regeneration, 
and angiogenesis.[54-57] However, studies have also investigated 
the effect of Li-ESWT in the treatment of neurogenic ED with 
nerve damage, such as post-RP ED, and showed considerable 
application prospects.[59,60]

In 2016, a pilot study by Frey et al.[60] included 16 patients who 
had undergone robot-assisted bilateral nerve-sparing RP and 
suffered from mild to severe postoperative ED for more than a 
year. They received 2 Li-ESWT sessions every alternative week 
for 6 weeks. Each treatment session included 3,000 shockwaves 
with a frequency of 5 Hz at different energy densities, and the 
shockwaves were applied to the root of the penis, to the shaft, 
and at a few millimeters proximal to the glans. They found that 
Li-ESWT ameliorated the erectile function with median im-
provement to the 5-item International Index of Erectile Function 
scores significantly at 1 month and 1 year after treatment. How-
ever, the improvements did not allow for unassisted erections 
sufficient for intercourse in most patients.

In 2016, Li et al.[66] developed a rat ED model related to pelvic 
neurovascular injuries to investigate the therapeutic effect of 
Li-ESWT (0.06 mJ/mm2, 300 pulses, 3 Hz) on neurogenic ED. 
The pelvic neurovascular injury model was established by bilat-
eral cavernous nerve injury and internal pudendal bundle injury 
(PVNI). They found that Li-ESWT could significantly promote 
the erectile function and major penile nerve regeneration, in-
cluding neuronal nitric oxide synthase (nNOS) nerve fibers after 
PVNI, compared with those in the control group. In their experi-
ment, they also found that Li-ESWT can promote the Schwann 
dedifferentiation and proliferation, which result in more mature 
SCs and good environment amenable to nerve regrowth. There-
fore, they assumed that Li-ESWT had a therapeutic effect on 

neurogenic ED through activation of SCs, promoting nerve re-
generation.

Li-ESWT activates SCs
As SCs play a predominant role in the process of peripheral 
nerve regeneration,[67-70] some studies focused on the effects of 
Li-ESWT on SCs both in vivo and in vitro. In the in vivo study, 
Li et al.[66] used a rat ED model related to pelvic neurovascu-
lar injuries to investigate the effect of Li-ESWT (0.06 mJ/mm2, 
300 pulses, 3 Hz) on the activation of SCs. Using the Western 
blotting technique, they found that the expression of p75 and 
p-Erk1/2 significantly increased in the penile tissue after Li-ES-
WT. This indicated that Li-ESWT could activate extracellular 
signal-regulated kinase (ERK)/mitogen-activated protein kinase 
(MAPK) and p75 to induce SC dedifferentiation and prolifera-
tion in the damaged nerves. Furthermore, there were more ma-
ture SCs (S100 positive SCs) in the damaged dorsal nerves in 
the Li-ESWT group than in the control group by immunofluo-
rescence staining. They assumed that Li-ESWT could stimulate 
dedifferentiation and proliferation of SCs in the damaged nerve 
by activation of ERK/MAPK and p75, which resulted in more 
mature SCs to promote nerve regeneration.

As activation of SCs by Li-ESWT in vivo is considered one of 
the possible mechanisms to promote nerve regeneration, there are 
numerous studies investigating the effect of Li-ESWT on SCs in 
vitro. In 2016, Schuh et al.[71] used rat sciatic nerves to elucidate 
the effects of Li-ESWT (0.10 mJ/mm2, 300 pulses, 3 Hz) on SC 
isolation and culture. After dissection, the sciatic nerves were treat-
ed with Li-ESWT, and the SCs were isolated and cultured for 15 
passages. The result showed that the quality of the cultured SCs, 
including the purity, proliferation rate, and expression of regenera-
tive–phenotype-associated markers, was significantly improved in 
the Li-ESWT group. In contrast, the control group exhibited pro-
gressively senescent behavior, such as decrease in proliferation, 
loss of specific markers, and increase in P16INK4A expression. In 
2016, Li et al.[66] used Li-ESWT to culture adherent rat SCs. Their 
result showed that the expressions of p-Erk1/2 and p75 were sig-
nificantly elevated using Western blot, and p-Erk1/2 tended to ac-
cumulate in the SC nuclei in immunofluorescence staining, which 
indicated that Li-ESWT triggers the initiation of p-ERK1/2-me-
diated downstream pathways in SCs. In addition, they found that 
a higher percentage of SCs entered the S phase and G2/M when 
treated with Li-ESWT than the untreated cells. Overall, these data 
demonstrate the growth-promoting effect of Li-ESWT on SCs. In 
2017, Wang et al.[72] treated RT4-D6P2T (rat SCs) with Li-ESWT 
(0.01 mJ/mm2, 3 Hz, different pulses) and found that Li-ESWT 
activated the protein kinase RNA-like endoplasmic reticulum (ER) 
kinase (PERK) pathway and enhanced the activating transcription 
factor 4 (ATF4) in an energy-dependent manner, which resulted 
in the increased expression of brain-derived neurotrophic factor 
(BDNF), which could benefit nerve regeneration.
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Hence, multiple evidences exist to prove that Li-ESWT can ac-
tivate and promote SC proliferation, both in vivo and in vitro, 
which should be of great benefit for nerve regeneration. This 
may be one of mechanisms through which Li-ESWT promotes 
peripheral nerve regeneration after injury.

Li-ESWT induces neurotrophic factors
Neurotrophic factors (NFs) are a class of secreted proteins, 
which are essential during the development and differentiation 
of the central and peripheral nervous system. NFs include nerve 
growth factor (NGF), BDNF, NT3, and so on.[73] Since their 
discovery in the 1950s by Levi-Montalcini and Hamburger,[74] 
in vitro and in vivo animal experiments have elucidated their 
strong ability to elicit positive survival and functional responses 
in the neurons of the peripheral and central nervous system.[73] 
After nerve injury, NFs are essential in controlling the survival, 
proliferation, and differentiation of neural and non-neural cells 
involved in nerve regeneration.[14,27]

BDNF
BDNF, as a member of the NF family, plays an important role 
in the survival of the existing neurons and the differentiation of 
new neurons.[75] It is associated with axonal regeneration, my-
elinogenesis of the medullated nerve fibers,[76] and SC regenera-
tion[77] during the repair of nerve injury and is thus a promis-
ing therapeutic molecule. In ED, BDNF has been demonstrated 
to enhance the regeneration of nNOS and recovery of erectile 
function.[78,79] In 2017, Wang et al.[72] found that Li-ESWT could 
stimulate the expression of BDNF both in vivo and in vitro. For 
the in vivo demonstration, they treated bilateral cavernous nerve 
crush injury (BCNI) in rats with Li-ESWT (0.06 mJ/mm2, 3 Hz, 
500 pulses) twice in a week and found that Li-ESWT signifi-
cantly promoted the expression of BDNF in penile tissues at 
RNA level. With the use of Li-ESWT, the expression levels of 
BDNF in the penis increased 3 days after injury and remained at 
a stable level for up to 26 days. For in vitro demonstration, they 
treated RT4-D6P2T (rat Schwann) cells with Li-ESWT (0.01 
mJ/mm2, 3 Hz, different pulses) and found that Li-ESWT in-
creased the expression of BDNF at the RNA level. Furthermore, 
the Western blot result also indicated that Li-ESWT increased 
BDNF through activation of PERK/ATF4 signaling pathway. 
Therefore, Li-ESWT could promote BDNF secretion both in 
vivo and in vitro, and the increase in BDNF may benefit nerve 
regeneration after nerve injury and the treatment of neurogenic 
ED.

NT-3
NT-3 is a key NF constituent in the peripheral nervous system 
as an important regulator of the neural survival, development, 
function, and neuronal differentiation.[80] At the same time, NT-3 
is an important autocrine factor, supporting SC survival and dif-
ferentiation in the absence of axons.[81] NT-3 also has an impor-

tant role in the axonal extension, survival and maintenance of 
neurons, and myelination and regeneration of neural fibers in 
nervous injury.[82] In 2015, Lee and Kim[51] used a rat model to 
explore the effect of Li-ESWT (3 Hz, 0.09 mJ/mm2, 300 pulses) 
on NT-3 expression in the spinal cord after sciatic nerve-crush-
ing damage. Li-ESWT significantly increased the expression of 
NT-3 1 day after nerve crushing and remained at a stable level 
for up to 14 days compared with the levels in the sham and con-
trol groups. They assumed that the application of Li-ESWT in-
creased the expression of NT-3, which facilitated the activity of 
macrophages and SCs, which promoted the survival and regen-
eration of the neurons.

Effect of Li-ESWT on cellular signaling for cell activation 
and mitosis
Li-ESWT is a mechanical force that can stimulate the tissues, es-
pecially cells. The conversion of mechanical force into biochem-
ical signals is referred to as mechanotransduction. Although the 
mechanism of Li-ESWT-induced mechanotransduction in target 
cells is still not clear, different pathways of biological reactions 
that derive from these mechanical forces were studied recently. 
There are various mechanisms behind the effects in nerve regen-
eration after Li-ESWT.

ERK pathway
In 2014, Weihs et al.[83] elucidated in their study that ESWT 
could activate adenosine triphosphate (ATP) release-coupled 
ERK pathway in several cell types (e.g., mesenchymal stem 
cells) to stimulate cell proliferation. In 2016, Schuh et al.[71] ap-
plied Li-ESWT to the whole sciatic nerve before isolation of 
SCs and found that it could enhance the extracellular levels of 
ATP. ATP can activate purinergic metabotropic P2Y receptors, 
then downstream the Erk1/2 signaling, and finally enhance cell 
proliferation. In 2016, Li et al.[66] also found that Li-ESWT could 
activate Erk1/2 in the rat SCs. Their result showed that the ex-
pression of p-Erk1/2 was significantly elevated at the protein 
level, and p-Erk1/2 tended to accumulate in the SC nuclei in im-
munofluorescence staining. In 2016, Zhao et al.[84] found that the 
activation of ERK1/2 in cultured PC12 cells could phosphory-
late cyclic adenosine monophosphate response element-binding 
protein (CREB) and promote the expression of thioredoxin-1 
(Trx-1). Trx-1 has various biological activities, including anti-
oxidant effects, neurotrophic cofactor, cell growth promotion, 
and cellular apoptosis suppression.

PERK pathway
In 2017, Wang et al.[73] found that Li-ESWT activated the 
PERK pathway and enhanced ATF4, which resulted in the in-
creased expression of BDNF in the rat SCs. PERK/ATF4 path-
way, a mechanistic branch of the unfolded protein response, 
is responsible for the attenuation of the overload of misfolded 
proteins, thereby alleviating the ER stress. In their study, they 
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found that Li-ESWT activated the PERK pathway by increas-
ing the phosphorylation level of PERK and eukaryotic initia-
tion factor 2α and enhanced ATF4 expression in an energy-
dependent manner. This resulted in the increased expression 
of BDNF.

Tropomyosin receptor kinase B pathway
As mentioned earlier, Li-ESWT can promote the expression of 
BDNF and NT-3, which can mediate their effects through their 
high affinity for the tropomyosin receptor kinase B (TrkB) re-
ceptor. In 2017, Su et al.[85] found that increased BDNF proteins 
activated TrkB and triggered the downstream phosphatidylino-
sitol 3-kinase/protein kinase B signaling pathway and increased 
the phosphorylation of CREB.[86]

In conclusion, there is a significant evidence to prove that the ap-
plication of Li-ESWT after nerve surgery promotes nerve regen-
eration and improves the functional outcomes. The benefits of 
Li-ESWT in peripheral nerve regeneration and neurogenic ED 
may be owing to the increase in NFs, SC activation, and cellular 
signaling activation for cell activation and mitosis (Figure 1). 
Given the preclinical benefits in the absence of any negative side 
effects, Li-ESWT should be investigated clinically in humans as 
an adjunct therapy after nerve surgery. 
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