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ABSTRACT

Male infertility is a common problem. There is growing evidence that infertile men may harbor significant 
illness and disease. Many of the genetic causes of male fertility have implications on other systemic ill-
nesses. This review aims to discuss various genetic conditions and gene mutations and alterations associated 
with male infertility and evidence for associated systemic conditions. These findings highlight the impor-
tance of a thorough workup in men presenting for a fertility assessment.
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Introduction

Infertility is a common problem, affecting up 
to 15% of couples, with male factor present 
in up to 50% of these cases.1 The exact etiol-
ogy often remains unclear, which has sprouted 
research to understand the breadth of disease, 
which impacts infertility as well as other sys-
temic and genetic diseases.2 Although the ex-
act etiology of infertility is unknown for ap-
proximately 40% of men, a European study 
found that up to 25% of men with azoosper-
mia and severe oligozoospermia had genetic 
 abnormalities.2-8

In the 1990s, researchers discovered only over 
1% of patients assessed at 2 high-volume male 
infertility clinics harbored significant patholo-
gies ranging from embryologic and endocrine 
abnormalities to malignancy as a result of ge-
netic and chromosomal anomalies.3-6 More re-
cent data suggest that this number is greater, 
with up to 6% of men being assessed for in-
fertility with underlying chromosomal anoma-
lies.7

Overall, this information highlights the impor-
tance of completing a full assessment of men 
presenting with infertility, in addition to a stan-
dard focused history, physical examination, 

and semen analysis. Our review highlights the 
genetic diseases potentially harbored by men 
presenting with infertility and the associated 
comorbidities and health implications of these 
conditions.

Genetic Conditions
Although the exact etiology of infertility is 
unknown for approximately 40% of men, 
a European study found that up to 25% of 
men with azoospermia and severe oligozoo-
spermia had genetic abnormalities, including 
cystic fibrosis transmembrane conductance 
regulator (CFTR) gene mutations, Y chro-
mosome microdeletions, and chromosomal 
abnormalities.2,8 Approximately 1000 genes 
were identified that could have a direct impact 
on spermatogenesis as well as associations 
with genitourinary birth defects and disorders 
of sexual differentiation, which collectively 
might contribute to fertility issues later in 
life.9-15 In some instances, genes might be de-
leted or the copy number of the gene might be 
increased or decreased (resulting from struc-
tural chromosomal anomalies owing to micro-
duplications or microdeletions), conferring a 
wide range of phenotypes, or there could be 
epigenetic modifications of the gene, which 
could modify the expression levels without a 
structural change in the gene itself.16
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Chromosomal Conditions

Y Chromosome Anomalies
The Y chromosome is an acrocentric chromosome, which has 
both a short arm (Yq) and a long arm (Yp) separated by a cen-
tromere.17 Alterations in the genes on both Yq and Yp are im-
plicated in infertility. Numerous genes on Yq affect spermato-
genesis (PCDH11Y, TSPY, and ZFY), and the sex-determining 
region gene (SRY), also located on Yq, encodes the transcription 
factor necessary for testis development.18-20 TSPY is thought to 
function as proto-oncogene and may be associated with devel-
opment of gonadoblastoma.21 SRY deletion can result in 46,XY 
individuals with a female phenotype, termed Swyer syndrome.22 
These individuals show complete gonadal dysgenesis and are 
at risk for developing germ-cell neoplasia and, thus, are rec-
ommended to undergo immediate gonadectomy at the time of 
diagnosis.22,23

Y Chromosome Microdeletions
There are 3 azoospermia factor (AZF) loci on the long arm of 
the Y chromosome (AZFa, AZFb, and AZFc), which encode 
multiple genes involved in spermatogenesis.19,20 Deletions 
within these loci are known as Y chromosome microdeletions, 
as these deletions are not identifiable with standard karyotype 
and require more detailed molecular techniques for diagnosis. 
It is estimated that Y chromosome microdeletions account for 
up to 12% of men with non-obstructive azoospermia.24 Genes 
that encode proteins involved in spermatogenesis include DBY, 
USP9Y, HSFY, KDM5D, PRY, RPS4Y2, BPY2, CDY, GOLG-
A2LY, and TTY4.19 Men with Y chromosome microdeletions 
require surgical sperm retrieval using assisted reproductive 
technology (ART) in order to father offspring. Knowing the 
location of the Y chromosome microdeletion is critical as the 
rates of sperm retrieval vary dramatically. Men with complete 
AZFa and AZFb microdeletions have no reports of success-
ful sperm retrieval; however, in the hands of a highly skilled 
surgeon, rates of sperm retrieval in men with AZFc approach 
50%-60%.24

Microdeletions of Y chromosome genes have implications be-
yond infertility and include other systemic diseases and condi-

tions, such as cardiovascular disease, cerebrovascular disease, 
neurologic conditions, malignancy (bladder, prostate, and liver), 
changes in crown tooth size and stature, and genitourinary birth 
defects (Table 1).12,21,25-34

The Y chromosome contains 2 pseudoautosomal regions 
(PARs) at the tip of each arm, with PAR1 at the end of Yq 
and PAR2 at the end of Yp.34 The PARs are homologous and 
undergo recombination with X chromosome PARs during 
meiosis, which is thought to be important for the appropriate 
segregation of sex chromosomes.19 These PARs contain nu-
merous genes, with 16 located in PAR1 and 5 genes located in 
PAR2.25 Mutations of the short stature homeobox (SHOX) gene 
in PAR1 are associated with a musculoskeletal and stature-re-
lated phenotypic spectrum of disorders, including Leri-Weill 
dyschondrosteosis, Madelung deformity of the wrists, bowed 
wrists, and non-specific short stature, and show a coexisting 
genomic syndrome present in approximately one-quarter of 
men with Y chromosome microdeletions.33 Duplication of the 
SHOX gene is responsible for the variable height seen in pa-
tients with Klinefelter syndrome (KS), whereas homozygous 
mutations may cause Langer mesomelic dwarfism.33 On PAR2, 
duplication of VAMP7 significantly affects the rates of crypt-
orchidism, resulting in spermatogenic dysfunction and is also 
implicated in external male genitalia abnormalities, such as re-
duced penile length and hypospadias.12

Structural Y Chromosomal Changes
In addition to the previously mentioned issues, structural chang-
es may occur owing to chromosomal translocation or chromatid 
fusion after chromosomal breaks, which result in isodicentric Y 
chromosomes (2 centromeres).35 These structural changes may 
cause gene duplications (from genes on the short arm, such as 
PAR1 genes) or deletions (from genes on the long arm, such as 
PAR2 genes) depending on the regions involved and may there-
fore result in variable phenotypes and mosaicism. Phenotypes 
may include short stature secondary to SHOX gene deletion (up 
to 80%), ambiguous genitalia (up to 75%), spermatogenic fail-
ure, growth delay, language delay, dysmorphic features, autism, 
mental disorders, and learning difficulties, many of which may 
be owing to loss of PAR2 genes.19,36

X Chromosome Anomalies
Although the Y chromosome contains genetic material for male 
development, there are multiple genes on the X chromosome in-
volved with male infertility, the most significant of which result 
in abnormalities and conditions related to the androgen receptor 
(AR) gene. 

In addition to the AR gene, various X chromosome related 
genes have also been implicated in male infertility (TEX11, 

• Infertile men may harbor genetic diseases with associated sys-
temic implications.

• Various genetic conditions have been implicated in male in-
fertility including chromosomal conditions, non-chromosomal 
conditions, disorders of sexual differentiation, and birth de-
fects.

• Men with infertility warrant a thorough work-up and evalua-
tion during their initial presentation.

Main Points
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MAGEB4, RHOX, HAUS7, and TAF7L). The testis-expressed 
gene 11 (TEX11) is a well-described X-linked gene involved 
in male infertility, which is located at the q13.2 locus.37 Since 
the gene is essential for meiotic recombination, gene mutations 
of TEX11 result in meiotic arrest and azoospermia.38 Melano-
ma-associated antigen B4 (MAGEB4) is involved in germ-cell 
differentiation and has been implicated in non-obstructive azo-
ospermia.39 Reproductive homeobox on the X chromosome 
(RHOX) genes are expressed in Sertoli cells, and certain gene 
variants of this family can be present in men with severe oligo-
zoospermia.40,41 The TATA-box binding protein associated factor 
7 like (TAF7L) gene encodes a transcription factor, which shows 
testis-specific expression and mutations that are associated with 
spermatogenic failure.40 Mutations of HAUS augmin-like com-
plex subunit 7 (HAUS7), which is involved in centrosome reg-
ulation and cytokinesis, has been described in cases of severe 
oligozoospermia.40

Kennedy Disease
Kennedy disease, also known as spinal and bulbar muscle atro-
phy, is a rare and usually adult-onset neurodegenerative condi-
tion associated with CAG trinucleotide repeat expansion (>35 
repeats) within the AR gene.42,43 Because this is a motor neu-
ron disease resulting from diminished transcriptional activation 
activity of the AR gene in addition to muscular atrophy, Ken-
nedy disease results in gynecomastia, testicular atrophy, and 
spermatogenic failure depending on the length of triplet repeat 
expansion.44 The age of onset and phenotypic severity of the dis-
ease is directly proportional to the length of the full penetrance 
trinucleotide expansions. Clinically, individuals with Kennedy 
disease develop progressive oligozoospermia or azoospermia 
and sexual dysfunction.45 At present, conflicting data exists with 
regard to triplet repeat lengths <35, but these individuals gener-
ally have milder symptoms.46-48

Klinefelter Syndrome
Klinefelter syndrome is a genetic condition that includes 1 or 
more extra X chromosome(s) and is the most common numeri-
cal chromosomal abnormality in men. The prevalence is 1/500 
of live male births and is believed to occur secondary to chromo-
somal non-disjunction during meiosis.2,49 Klinefelter syndrome 
is frequently implicated in infertile men (up to 12%) with non-
obstructive azoospermia, and the etiology for infertility stems 
from small testes, low testosterone levels, and fibrosis of the 
seminiferous tubules.49 In the majority (90%) of cases, there is 
a single extra copy of an X chromosome resulting in a 47,XXY 
karyotype, but other genotypes may be present, including more 
than 1 extra copy of the X chromosome (i.e., 48,XXXY or 
49,XXXXY), mosaicism (46,XY/47,XXY), or partial supernu-
merary chromosomal pieces (47,iXq,Y).49,50

These men have characteristic phenotypic features, including 
tall stature; reduced testis size; reduced body, chest, and facial 
hair; gynecomastia; varicosities of the lower extremities; eu-
nuchoid skeletons; wide hips; narrow shoulders; and absence 
of frontal balding.49 Men with KS have reduced normal tes-
ticular tissue secondary to fibrosis and hyalinization of the 
seminiferous tubules, which begins early in life during the fe-
tal stage and rapidly progresses throughout puberty.51,52 There 
are various hypotheses that explain these changes, including 
insufficient supernumerary X chromosome inactivation, Ley-
dig cell insufficiency, and deregulation of Leydig and Sertoli 
cells.52-54

Systemic conditions in individuals with KS may include altered 
intellect, osteoporosis, increased risk of breast malignancy, sex-
ual dysfunction, and low testosterone levels requiring exogenous 
hormone replacement therapy.51,52

Table 1. Systemic Diseases and Conditions Associated with Y Chromosome Gene Alterations

Gene Location Systemic Disease Association

DBY Yp; AZFa Expressed in human serum after ischemic stroke;26 expressed in the brain, may be a biomarker for 
  Parkinson’s disease.27

USP9Y Yp; AZFa Upregulated in heart failure and dilated ischemic cardiomyopathy28

UTY Yp; AZFa Predisposes men to higher risk of coronary artery disease;29 associated with urothelial cancers of the 
  genitourinary tract in animal models30

EIF1AY Yp; AZFb Expressed in human serum after ischemic stroke;26 upregulated in heart failure and dilated ischemic 
  cardiomyopathy28

KDM5D Yp; AZFb Altered gene expression and epigenetic modifications results in aggressive prostate cancer31

RBMY Yp; AZFb Linked to male hepatocellular carcinoma32

TSPY Yq Linked to early- and late-stage gonadoblastoma and germ-cell tumors21

SHOX PAR1 Birth defects: Leri-Weill dyschondrosteosis, Madelung deformity of wrists, short stature33,34

VAMP7 PAR2 Birth defects: anomalies of external male genitalia (reduced penile length, hypospadias, and cryptorchidism) 
  and autism spectrum disorder12
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47,XYY Male
A very rare occurrence involving chromosomal non-disjunction 
is the 47,XYY karyotype. This condition occurs in 1/1000 of 
live births and is associated with limited phenotypic abnormali-
ties but may include variability in the testicle size and develop-
ment (from normal size to atrophic), elevated body-mass index, 
greater stature secondary to SHOX gene duplication, increased 
risk of learning disability, language issues, and behavioral is-
sues.2,55-57 From a fertility standpoint, these men may have hor-
monal disturbances and variability in sperm quality, including 
reduced sperm concentration, increased prevalence of hyperhap-
loid (increased number of unpaired chromosomes) sperm that 
may transmit an extra chromosome to their offspring, risk of 
spermatogenic failure with maturation arrest, and Sertoli-cell 
only histopathologies.2,55

46,XX Male
This rare condition, also known as de la Chapelle syndrome, 
occurs in 1/20 000 of live births secondary to SRY translocation 
to the X chromosome or an X chromosomal abnormality in the 
region responsible for inhibition of autosomal testis-determin-
ing genes.2,58 Phenotypically, these men may have genitourinary 
anomalies, including micropenis, persistent Müllerian remnants, 
hypospadias, and cryptorchidism.59 Hormonally, these men tend 
to have hypertrophic hypogonadism and azoospermia because 
of the absence of azoospermia factors.58

Kallmann Syndrome
Kallmann syndrome occurs in up to 1 in 10 000 of live births.2 
Common characteristics include hypogonadotropic hypogonad-
ism and anosmia and less commonly obesity, ocular abnormali-
ties (congenital ptosis and abnormal eye movements), hearing 
impairment, involuntary limb movements, cleft palate or lip, 
dental disorders, upper urinary tract anomalies (renal agenesis), 
and corpus callosum agenesis.60 KAL-1, a gene encoding a neu-
ral cell adhesion molecule, encodes the protein that is most com-
monly involved in normal hypothalamic development.61 Other 
genes associated with Kallmann syndrome, include FGFR1, 
CHD7, WDR11, PROKR2, PROK2, and FGF8.57 Because the 
main driver for infertility in men with Kallmann syndrome is 
hypogonadotropic hypogonadism, exogenous treatments, such 
as testosterone as needed for virilization and gonadotropins for 
fertility, may be used.62

Other Chromosomal Abnormalities
The incidence of chromosomal translocations in infertile men is 
9-fold greater than that in the general population and includes 
variable degrees of translocations, which may be balanced or 
unbalanced; some individuals may have some degree of mosa-
icism.63 More specifically, Robertsonian translocations, which 
occur between the acrocentric chromosomes (13, 14, 15, 21 and 
22), have a well-documented impact on male infertility.64 These 

occur in 1/1000 of births and, as with any chromosomal translo-
cation, may have variable balancing and complexity.64 The most 
common translocations include 13q14q and 14q21q. Men with 
these translocations tend to be phenotypically normal but may 
present with reproductive difficulty. These translocations may 
lead to oligozoospermia, monosomy or trisomy in offspring, and 
spontaneous miscarriage.65

In general, infertile men also have an 8-fold higher rate of an-
euploidy and chromosomal inversion than fertile men.2 When 
examining a subset of infertile men, 4.6% of men with oligozoo-
spermia and 13.7% of men with non-obstructive azoospermia 
had chromosomal inversions or translocations.66

Non-structural Chromosomal Conditions That Underlie 
Asthenozoospermia, Asthenoteratozoospermia, and  
Teratozoospermia

Primary Ciliary Dyskinesia
Primary ciliary dyskinesia (PCD) is an autosomal recessive con-
dition that results in male infertility, and patients with PCD also 
have dextrocardia and chronic rhinosinusitis with an increased 
risk of bronchial sepsis.67,68 As cilia line the respiratory tract, 
abnormalities result in reduced mucociliary clearance of the 
airways, predisposing the individuals with PCD to chronic air-
way infections. Functional ciliary structures also are critical for 
sperm flagellar tail function; therefore, men with PCD exhibit 
severe deficits of sperm motility as well as other structural fla-
gellar defects (missing dynein arms, lack of radial spokes, and 
microtubular translocations).67,68 Multiple autosomal genes may 
be implicated in PCD, including CCD39, DNAAF1-3, DNAH5, 
DNAI1/2, DYX1C1, HEATR2, HYDIN, LRRC6, RSPH1, RS-
PH4A, RSPH9, and ZMYND10, which portends a wide spectrum 
of possible motility phenotypes as described earlier.68,69 Today, 
over 991 different gene defects are known (>90 validated for 
clinical diagnostics) affecting the structures of the axoneme, in-
ner and outer dynein arms and their regulatory complex, central 
microtubule pair, Nexin links, and laterality.

Multiple Morphological Abnormalities of Sperm Flagella
Multiple morphological abnormalities of sperm flagella (MMAF) 
is a syndrome associated with male infertility, which includes a 
spectrum of morphological sperm flagellar abnormalities, includ-
ing dysplasia of the fibrous sheath or absent or dysmorphic (short, 
bent, irregular, or coiled) flagella.70,71 The principal piece of the fla-
gellum is usually affected, which results in flagellar abnormalities 
and ultrastructural defects.70 Because a normal axonemal struc-
ture occurs in a 9+2 format, these individuals usually possess a 
9+0 structure owing to the absence of central microtubular pairs.71 
Potential genes mutated in MMAF include DNAH1 (better preg-
nancy rates after intracytoplasmic sperm injection), CFAP43,and 
CFAP44, which are responsible for the majority (up to 70%) 
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of cases.71,72 Less commonly, mutations of AKAP4, CCDC39, 
CFAP69, ARMC2, ORICH2, AK7, CFAP251, CFAP65,CEP135, 
FSIP2, SPEF2, and DNAH2 may be involved.71,73 In addition to 
morphological abnormalities, these patients are at risk of gono-
somal disomies and diploidies.74

Aurora Kinase C Deficiency
Aurora kinase C (AURKC) encodes a serine/threonine protein 
kinase that is involved in regulating chromosome segregation 
during mitosis and is highly expressed in the testis.75,76 Men with 
AURKC defects present with primary infertility characterized 
by teratozoospermia, where the spermatozoa are aneuploid with 
significantly larger heads (macrocephalic spermatozoa) and ad-
ditional flagella.75-77 The most common AURKC defect is a muta-
tion, c.144delC, which results in premature translation termina-
tion forming a truncated protein without the kinase domain.75-77 
Studies of North African infertile men have demonstrated a high 
carrier rate of the AURKC c.144delC mutation with an allelic 
frequency of 2.14%.75

Young’s Syndrome
Young’s syndrome is a rare condition characterized by male in-
fertility, chronic rhinosinusitis, and bronchiectasis.78 Male infer-
tility is affected by spermatogenic dysfunction resulting from 
axonemal abnormalities and epididymal obstruction that results 
in azoospermia.79

Globozoospermia
Globe-shaped, round sperm heads, or globozoospermia, is an 
abnormal sperm morphology in which the heads lack or have at-
rophied or misplaced acrosomes necessary for egg fertilization.80 
Various genes have been studied as the etiologic factors for glo-
bozoospermia, including SPATA16, PICK1,and DPY19L,81 and 
DYP19L2 and SPATA16 have been clearly demonstrated to be 
causative.82,83 Patients with globozoospermia rely on ART and 
intracytoplasmic sperm injection (ICSI), but the rates of fer-
tilization and live births are low despite oocyte activation with 
ICSI and in vitro fertilization (ICSI-IVF), and many embryos are 
at increased risks for aneuploidy.81,84

Cation Channels of Sperm 
Mutations of cation channels of sperm (CATSPER) are a known 
cause of male infertility. These are among many other known 
ion channels implicated in male infertility, such as the proton 
voltage-gated ion channel (Hv1), potassium voltage-gated ion 
channel (SLO3/KCNU1), and sodium voltage-gated ion chan-
nel (NaV1.1-1.9).85 Of the 4 genes identified in the CATSPER 
family, 2 are responsible for the infertility phenotype (CATPSER1 
and CATSPER2).86 Although both may cause infertility albeit 
with differential effects on semen quality, CATSPER1 is non-syn-
dromic, whereas CATSPER2 is syndromic (deafness-infertility 
syndrome).87 At a semen analysis level, men with CATSPER1 

mutations have oligozoospermia, reduced semen volume, mi-
nor changes to sperm motility, and some effect on morphology, 
whereas men with CATSPER2 mutations have oligozoospermia, 
asthenospermia, teratazoospermia, and reduced viability.87

Disorders of Sexual Differentiation

Androgen Insensitivity Syndrome
Androgen insensitivity syndrome (AIS) is a rare condition that 
occurs secondary to damaging mutations of the AR gene.88 These 
individuals generally have a 46,XY karyotype and may present 
with a spectrum of diseases, including partial, mild, or complete 
androgen insensitivity.88 Given this spectrum of AR insensitiv-
ity, individuals have varying degrees of virilization and altered 
external genitalia, including micropenis, undescended testis, gy-
necomastia, and hypospadias.88,89 In complete AIS, individuals 
present with complete feminization of the external genitalia (but 
functional cryptorchid testes), whereas those with mild disease 
may present as undervirilized males.90 Those with partial AIS, 
depending on the regions where the AR is involved, variable 
expressivity and/or other modifying factors may present with 
a much wider spectrum of phenotypes that can vary between 
siblings because of the presence of other biological modifiers.90 
Other than virilization changes, patients with AIS may be tall, 
have endocrinopathies, and may present with inguinal hernias.14 
In some instances, these patients may present only with infertil-
ity and may have impaired spermatogenesis and sexual dysfunc-
tion.91

Gonadal Dysgenesis
Gonadal dysgenesis is a family of conditions with impaired 
gonadal development, which ranges from partial to complete 
gonadal dysgenesis. Various gene mutations are responsible for 
different types of dysgenesis, including SRY, SOX9, WT1, SF1, 
DMRT1, DHH, FO2, NR5A1, GATA4, MAP3K, and BMP1.92 
More specifically, mixed gonadal dysgenesis occurs second-
ary to rearrangement or chromosomal missegregation and of-
ten results in a 45XO/46XY mosaicism, with up to one-third of 
patients having a normal karyotype.93 These patients present as 
phenotypically normal males, but some individuals may have 
some degree of ambiguous genitalia.94 Internally, they tend to 
have a single abnormal testis, often devoid of germ cells, and a 
contralateral streak gonad. Systemically, these individuals have 
other associated conditions including cardio-renal malforma-
tions and malignancy (germ-cell tumors and gonadal blasto-
mas).95

Five Alpha Reductase Deficiency
Five alpha reductase (5AR) converts testosterone to dihydrotes-
tosterone (DHT), and alteration of 5AR can result in complete or 
partial enzyme deficiencies.96 The AR in the testis relies on tes-
tosterone for spermatogenesis, but DHT is required for  accessory 
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sex organ development. Therefore, individuals with 5AR defi-
ciency have a 46,XY karyotype and normal internal structures, 
including testicular gonads and Wolffian duct structures (seminal 
vesicles, vas deferens, epididymis, and ejaculatory ducts), but are 
phenotypically female owing to the lack of DHT.96 Because the 
appearance of the external genitalia is that of a female, these indi-
viduals are typically raised as females; however, during puberty, 
testosterone surges promote testicular descent, penile growth, and 
development of a male body habitus.96 However, in the absence 
of DHT, there is limited phallic development.96 In addition to re-
duced phallic length, there may be accompanying hypospadias, 
which may impair natural conception.13 Interestingly, these indi-
viduals also have low-volume and viscous ejaculates secondary 
to poor prostate development from reduced DHT levels and an 
absence of serine proteases necessary for liquefaction.13

Congenital Adrenal Hyperplasia
This autosomal recessive condition occurs secondary to vari-
ous enzyme defects in the normal steroidogenesis pathway. The 
most common of these includes 21-hydroxylase deficiency.97 
The steroidal pathway is responsible for the production of gluco-
corticoids, mineralocorticoids, and androgens; depending on the 
enzymatic defect, various deficiencies and/or combinations may 
occur. In patients with congenital adrenal hyperplasia, fertility 
ranges from 23% to 67%, which may be secondary to intrates-
ticular adrenal rest tumors, which may cause gonadal damage or 
hypogonadotropic hypogonadism from negative feedback of ex-
cess androgens produced from the adrenal gland.97 Patients with 
congenital adrenal hyperplasia are also at an increased risk of 
developing adrenal tumors and hyperplasia, short stature, insulin 
resistance, and cardiovascular disease.98

Persistent Müllerian Duct Syndrome
This disorder is characterized by the persistence of structures 
formed by the Müllerian duct, including the uterus, cervix, fal-
lopian tubes, and upper two-thirds of the vagina.99 This phenotype 
develops secondary to gene mutations of either anti-Müllerian 
hormone (AMH) or its receptor (AMHR2).100 These individuals 
have a 46,XY karyotype and are at an increased risk for cryptor-
chidism or testicular ectopia and subsequently have an increased 
risk of certain malignancies, such as teratomas, yolk sac tumors, 
and embryonal tumors.99 Although fertility is limited in these in-
dividuals and they have azoospermia, rare cases have been report-
ed in those with a scrotal testis and associated vas deferens and 
epididymis.100,101 These individuals may also develop obstructive 
causes of infertility secondary to iatrogenic injury, which may oc-
cur during the removal of persistent Müllerian remnants.102

Birth Defects
There has been emerging evidence that male infertility is linked 
to genitourinary birth defects. Individuals with these defects 
may also be harboring additional systemic disease. 

Congenital Abnormalities of the Kidney and Urinary Tract
Congenital anomalies of the kidney and the urinary tract 
(CAKUT), which include a compilation of abnormalities of 
the upper and lower urinary tracts, represent 30% of prena-
tal  abnormalities.103 Within the upper urinary tract, common 
anomalies include renal changes (dysplasia, agenesis, hypopla-
sia, ectopia, fusion, duplication, and supernumerary kidneys), 
ureteral anomalies (ureterocele, vesicoureteral reflux, primary 
megaureter, ureteropelvic or ureterovesical junction obstruc-
tion, and ureteral duplication), posterior urethral valves, and 
hypospadias.104 FAT4 is a gene implicated in CAKUT and has 
associations with cryptorchidism and subsequent spermato-
genic failure.105 Interestingly, whole-exome sequencing (WES) 
of patients with CAKUT has revealed a range of additional 
phenotypes outside the urinary system, including facial dys-
morphisms, cleft palate, microcephaly, gastrointestinal abnor-
malities, intellectual disability, hypotonia, and skeletal defor-
mity.105

Myc-Associated Zinc Finger Protein
Myc-associated zinc finger protein (MAZ), located on chro-
mosome 16p11.2, is a gene that encodes a C2H2 zinc finger 
transcription thought to impact WNT signaling.106,107 MAZ-
related abnormalities occur in a dosage-sensitive fashion; 
although it is expressed ubiquitously throughout the body, 
it has been found to cause genitourinary birth defects even 
in non-syndromic individuals.15 MAZ was originally only 
thought to be a simple housekeeping gene; deletion of MAZ 
resulted in defective development of the genitourinary system 
in patients exhibiting cryptorchidism, micropenis, and blad-
der maldevelopment.15 Copy number variants of MAZ have 
been associated with issues in other organ systems, and in-
dividuals with MAZ copy number variants exhibit behavioral 
abnormalities, cardiac anomalies, gastrointestinal issues, 
skin and hair changes, ocular problems, and facial dysmor-
phisms.9

CRK-Like Proto-Oncogene 
CRK-like proto-oncogene (CRKL) is associated with the Di-
George/del22q11.2 syndrome and encodes a SH2 and SH3 
homology adaptor protein, which is involved in tyrosine ki-
nase signaling pathways.11 This gene is expressed ubiquitously 
throughout the body, but it has been discovered that CRKL dele-
tion is responsible for upper urinary tract abnormalities in addi-
tion to cryptorchidism and micropenis.11 Although a cryptorchid 
phenotype was observed, spermatogenic failure did not occur, 
suggesting that CRKL had a unique role in fertility and sper-
matogenesis.11 CRKL mutations affect other organ systems as 
well and causes defects, including cardiac defects, craniofacial 
anomalies, hearing and ocular changes, development impacts, 
endocrine dysfunction, liver problems, and gastrointestinal dys-
function.9
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Congenital Bilateral Absence of the Vas Deferens
Abnormalities in the CFTR gene, located on chromosome 7, 
are a well-documented source of male infertility.108,109 The most 
common mutation within the gene of over 1300 different pos-
sible mutations is phenylalanine at position 508, which results 
in abnormal protein folding and dysfunction of a chloride chan-
nel.110 Given multiple possible mutations, various phenotypes 
are possible and include chronic bronchiectasis with recurrent 
infections and pancreatic insufficiency.111 Polymorphisms in 
addition to gene mutations, such as the 5T allele, also modify 
protein expression impacting RNA splicing, protein translation, 
and penetrance.10

Infertility in this subset of men is often secondary to obstructive 
azoospermia owing to congenital bilateral absence of the vas 
deferens (CBAVD) but may also be because of atrophy and/or 
absence of other key structures in the reproductive tract, such as 
the seminal vesicles or epididymis.112 Although an overwhelm-
ing majority (>97%) of men with cystic fibrosis have CBAVD, 
a large number of men possessing a CFTR mutation have no 
significant stigmata of the disease.113 Given that the vas deferens 
develops from the mesonephric duct, these men may have other 
genitourinary changes, including renal agenesis.

A majority of CBAVD cases (80%) are related to CFTR muta-
tions; however, the remaining (20%) possess no clear etiology.114 
WES discovery of the CFTR gene permitted the identification 
of adhesion G protein-coupled receptor G2 (ADGRG2) on the X 
chromosome at locus p22.13.115 ADGRG2 is part of a family of 
receptors throughout the body but specifically appears to have a 
tissue-restricted pattern to the efferent ducts with gene deletion, 
providing a possible etiology of infertility in these men.114

Other Genes Implicated in Birth Defects
Numerous other genes have been identified and are responsible 
for both genitourinary birth defects and other systemic condi-
tions, and many of them continue to be investigated. Examples 
of such genes include mutations of E2F1, which is implicated 
in spermatogenic failure and cryptorchidism, OTX1, which is 

 associated with external genitalia birth defects and renal anoma-
lies, as well as KANK1, KCTD13, and SH2B1 (Table 2).9

Other Conditions

Myotonic Dystrophy
Myotonic dystrophy is an autosomal dominant condition involv-
ing a trinucleotide CTG repeat and occurs secondary to an ab-
normality in 1 of 2 genes, DMPK (type 1) or CNBP (type 2).116 
Myotonic dystrophy symptoms may appear early in life or not 
until later in adulthood and  mainly include muscular weakness. 
Additional problems affecting the individuals with this disease 
include cardiac abnormalities, endocrinopathies, developmental 
delay, and cataracts.117 Larger CTG expansions may confer more 
severe phenotypes.118 Type 1 has been implicated in infertility 
and type 2 with hypogonadism. These individuals have testicular 
atrophy along with hyalinization and atrophy of the seminifer-
ous tubules on histopathologic analysis, which could lead to in-
fertility.117

Noonan Syndrome
This disorder affects many body systems and is associated with 
infertility. Individuals usually have unusual facial features, short 
stature, cardiac and renal abnormalities, developmental delay, 
coagulation disorders, lymphatic malformations, skeletal ab-
normalities, and genetic predisposition to myeloproliferative 
disorders.119 The majority (approximately 50%) of individuals 
with Noonan syndrome have a missense mutation in the protein 
of tyrosine phosphatase non-receptor type 11 (PTPN11) gene, 
whereas up to 30% of them may have no identifiable genetic 
cause.120 From a reproductive perspective, these men present 
with testicular Leydig cell dysfunction and altered hormonal 
levels, such as an elevated follicle-stimulating hormone.121 Fur-
thermore, these men often have bilateral cryptorchidism, which 
can lead to spermatogenic dysfunction.121

Spina Bifida
Spina bifida is also known as myelomeningocele, and individ-
uals with spina bifida have incomplete closure of the  spinal 

Table 2. Gene Mutations and Copy Number Variants and Their Known Associations with Male Genitourinary Birth Defects

Gene Location Function

E2F transcription factor 1 (E2F1) 20q11.22 Transcription factor involved in cell-cycle regulation and apoptosis

Orthodenticle homeobox 1 (OTX1) 2p15 Transcription factor with roles in the vertebrae, brain, and development of 
  sensory organs

Kidney ankyrin repeat-containing 9p23 Involved in cytoskeleton formation via actin polymerization 
protein 1 (KANK1) 

Potassium channel tetramerization 16p11.2 Substrate adapter of a E3 ubiquitin protein ligase 
domain containing 13 (KCTD13) 

SH2B adaptor protein 1 (SH2B1) 16p11.2 Adaptor protein that binds to tyrosine kinases
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cord with variable degrees of severity from spina bifida oc-
culta (small gap in the spine with no entrapment of cerebro-
spinal fluid or spinal-cord contents) to myelomeningocele, 
which includes spinal cord exposure in the region of the lum-
bar spine.122 Although these patients do not have testicular dys-
function, depending on the degree of spinal cord involvement 
and hydrocephalus, they may have sexual dysfunction owing 
to ejaculatory failure and possible fertility issues.123 Therefore, 
these patients may require electro- or vibratory-stimulated 
ejaculation or surgical sperm retrieval to obtain sperm for as-
sisted reproduction. In rare cases, there have been reports of 
spermatogenic deficiencies with an unknown etiology because 
the testes are generally normal.123

Bladder Exstrophy
Bladder exstrophy occurs in 1/30 000 to 1/50 000 of live births. 
This rare condition includes incomplete closure of the lower an-
terior abdominal wall resulting in externalization of the urinary 
bladder and epispadias secondary to inadequate formation of the 
urethra.124 Although testicular function and spermatogenesis are 
normal, men with bladder exstrophy often have reduced penile 
length, which may affect sexual function, and epispadias may 
create anatomical challenges for natural conception.125 There 
have been some isolated reports of patients with exstrophy with 
azoospermia.125

Prune Belly Syndrome
Prune belly syndrome includes a triad of cryptorchidism, uri-
nary tract malformations, and reduced abdominal wall muscu-
lature. This rare condition is estimated to occur in 1/30 000 to 
1/40 000.126 Secondary to cryptorchidism, these individuals have 
spermatogenic dysfunction but may also have ejaculatory dys-
function because of their megalourethra and reduced antegrade 
ejaculation from bladder neck incompetence.127

Conclusion

Male factor infertility is relatively common, and men with infer-
tility may harbor systemic and genetic diseases. These men war-
rant a thorough workup and evaluation to assess for additional 
systemic diseases because they could have a subtle phenotype 
and/or be asymptomatic. Infertility may be the presenting symp-
tom of the underlying disease, and identification of other medi-
cal issues during infertility workup may permit early interven-
tion and limit further disease progression.
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