

Biparametric magnetic resonance imaging in the surveillance of testicular tumors following radical orchietomy

Michele Scialpi¹ , Antonio Improta¹ , Danilo Delli Carpini¹ , Monica Tonto¹ , Refky Nicola² , Francesco Mancioli³

Cite this article as: Scialpi M, Improta A, Carpini DD, Tonto M, Nicola R, Mancioli F. Biparametric magnetic resonance imaging in the surveillance of testicular tumors following radical orchietomy. Turk J Urol 2020; 46(6): 436-41.

ABSTRACT

Computed tomography has been considered the preferred imaging modality for the surveillance of patients with testicular tumors (TTs) following radical orchietomy. However, because of the concerns of frequent radiation exposure and intravenous iodinated contrast, biparametric magnetic resonance imaging (bpMRI) is a valid and safer alternative in the surveillance of patients with TT, instead of multiparametric magnetic resonance imaging. In this review article, we propose a protocol algorithm that utilizes bpMRI in the evaluation of patients after radical orchietomy for TTs.

Keywords: Biparametric magnetic resonance imaging; magnetic resonance imaging; radical orchietomy; testicular cancer; whole-body magnetic resonance imaging.

ORCID iDs of the authors:

M.S. 0000-0002-4842-2304;
A.I. 0000-0002-5886-5395;
D.D.C. 0000-0003-4614-3536;
M.T. 0000-0003-0504-7871;
R.N. 0000-0003-4361-7740;
F.M. 0000-0001-5117-3591.

¹Division of Diagnostic Imaging, Department of Surgical and Biomedical Sciences, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy

²Department of Radiology, Roswell Park Cancer Institute, Radiology Buffalo, NY, USA

³Division of Radiology, Saint Maria Hospital of Terni, Terni, Italy

Submitted:
20.08.2020

Accepted:
25.08.2020

Available Online Date:
09.10.2020

Corresponding Author:
Michele Scialpi
E-mail:
michelescialpi1@gmail.com

©Copyright 2020 by Turkish Association of Urology

Available online at
www.turkishjournalofurology.com

Introduction

Testicular tumors (TTs) are the most common nonhematologic cancer in men between the ages of 15 and 50 years. They account for 1% of the malignant tumors in 90%–95% of TTs. The most common TTs are the germ cell tumors (GCTs). These comprise seminomatous GCTs (SGCT), nonseminomatous GCTs (NSGCTs), and mixed GCTs. SGCTs occur in men between the ages of 35 and 45 years, whereas NSGCTs occur in men between the ages of 15 and 35 years.

Approximately 70%–80% and 20% of patients with SGCT and NSGCT, respectively, are identified at stage I.^[1,2] Radical orchietomy is the preferred treatment for a disease at stage I in almost 70%–75% of NSGCT and 83% of SGCT cases. These patients are monitored frequently by physical examination, serological testing, and cross-sectional imaging every 3–6 months for the first year and then twice in the subsequent year.^[3] The remission rate for patients in the early stages is 99%, but the remission rate for the advanced stages with good, intermediate, and poor prognoses is 90%, 75–80%,

and 50%, respectively.^[4] TTs can metastasize via the lymphatic drainage. The retroperitoneal lymph nodes (RPLNs) are the most common sites for metastasis.^[5-7] NSGCTs most frequently metastasize by hematogenous spread to the lungs.

The follow-up imaging includes an abdominal computed tomography (CT) scan^[8] after orchietomy. The chest CT is also recommended for patients with a higher risk for thoracic involvement.^[3,8] According to the appropriateness criteria from the American College of Radiology, CT of the abdomen and pelvis is highly recommended for the assessment of RPLNs.^[9] In young men, radiation exposure and the use of intravenous (IV) iodinated contrast is a growing concern. As a result, follow-up imaging must be planned carefully by keeping the radiation doses “as low as reasonably achievable.” In addition, the CT protocol with a split bolus has been proposed to reduce the radiation dose.^[10-12]

Multiparametric (mp) whole-body (WB) magnetic resonance imaging (MRI) is a valid alternative to CT scan in the staging and sur-

veillance of oncological patients. However, according to the recommendations of the European medicine agency's pharmacovigilance risk assessment committee, a suspension of 4 linear gadolinium-based contrast agents for IV injection has demonstrated the evidence of brain deposition.^[13]

Biparametric MRI (bpMRI), which includes T1- and T2-weighted morphological sequences and diffusion-weighted imaging (DWI), is a valid alternative to CT and mpMRI because of the lack of radiation exposure and absence of gadolinium; yet, it provides an excellent problem-solving capability and soft-tissue characterization modality. Currently, it is used in oncology for tumor detection and staging.^[14-17]

We propose the use of bpMRI in the surveillance of patients after radical orchiectomy for TTs as a safer alternative to CT.

Computed tomography

In the follow-up of patients with TTs, CT of the abdomen and pelvis is the preferred imaging modality for the staging for RPLNs because it allows an accurate assessment of the LN size and attenuation.^[18] The accuracy of CT in detecting the metastatic RPLNs ranges from 73% to 97%, whereas the sensitivity and specificity can vary greatly from 65% to 96% and 81% to 100% respectively.^[19-25] Frequent CT scans play a critical role in the surveillance of stage I GCT.^[26] Although the data available for young men are controversial, the increasing risk of radiation exposure and cumulative dose should be taken into consideration.^[27,28] Minimal benefit has been demonstrated if the patients have 5 chest/abdomen/pelvis monitoring scans at 3, 6, 9, 12, and 24 months after orchiectomy versus 2 CT scans at 3 and 12 months.^[29,30]

Main Points:

- Computed tomography (CT) is the primary imaging modality for the surveillance of testicular tumors (TTs) after orchiectomy for both staging lymph nodes (LNs) and assessing for metastasis.
- Adverse reactions to iodinated contrast and the effects of radiation exposure should be considered in the surveillance of TT after orchiectomy by CT.
- Biparametric magnetic resonance imaging (bpMRI), which includes a T1- and T2-weighted morphological sequences and diffusion-weighted imaging, is a valid alternative to CT and multiparametric MRI because of the lack of radiation exposure and absence of gadolinium.
- bpMRI is accurate, with high sensitivity and specificity for detecting retroperitoneal LN in low-risk stage I seminomatous and nonseminomatous tumors.
- Whole-body-bpMRI and chest CT allow an accurate detection of LN and lung metastasis in high-risk stage II and higher nonseminomatous tumors.

Although CT is more sensitive for detecting recurrent disease in the chest^[31,32], recent studies indicate that chest radiography is sufficient for follow-up for stage I seminoma^[31,33-35] and stage I nonseminoma.^[31,34] In patients with stage II or higher of nonseminomatous tumors, chest CT is the preferred imaging modality, with no added value for routine chest radiographs.^[33,36,37]

Positron emission tomography

Positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-D-glucose integrated with computed tomography (¹⁸F-FDG PET/CT) is superior to CT in detecting residual tumor in patients after chemotherapy with seminoma.^[38-43] Therefore, it can be helpful for follow-up in patients with stage IIB, IIC, and III seminoma who have a mass greater than 3 cm but have normal tumor markers. However, in patients with nonseminoma, the value of FDG-PET is limited.^[31,44-46]

There are both false-negative and false-positive results in patients with seminoma. The false-negative results are transitory suppression of tumor cell activity, and lesions <10 mm are difficult to detect because of the low spatial resolution on F-FDG PET/CT. However, in patients with nonseminoma, false negative results can occur because the characterization of residual masses is difficult. The false-positive results are primarily because of the inflammatory or granulomatous tissues.^[47] Furthermore, in a recent trial by the National Cancer Research Institute's Testis Cancer Clinical Studies Group, when FDG-PET/CT was used

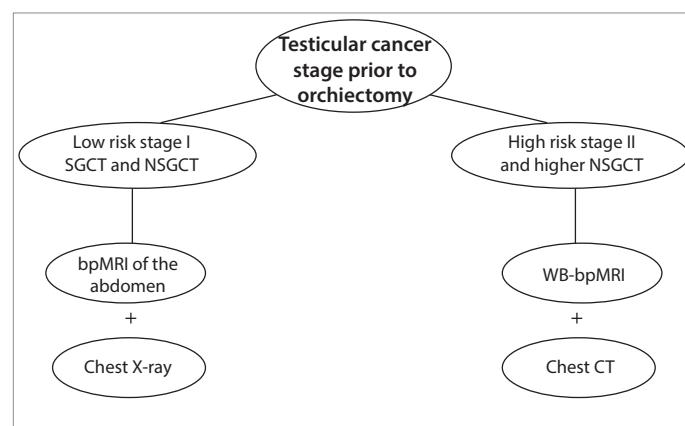


Figure 1. Our proposed algorithm for surveillance of patients with testicular cancer after orchiectomy

Abdominal biparametric magnetic resonance imaging (bpMRI) is preferred and chest X-ray is sufficient for patients with a low risk of metastasis for localizing retroperitoneal lymph nodes (RPLNs). For patients with a high risk of metastatic disease, both whole-body-bpMRI (WB-bpMRI) and chest CT are recommended. The objective is an accurate assessment of patients who have RPLNs, supradiaphragmatic lymph node (SDLNs), and lung metastasis. SGCT: seminomatous germ cell tumor; NSGCT: nonseminomatous GCT; Gd-DTPA: gadolinium-diethylenetriamine pentaacetic acid

to predict relapse in patients with high-risk stage I NSGCT, the study was terminated early because of unacceptable relapse rates in patients with PET-negative results.^[48]

Magnetic resonance imaging

In initial studies, MRI of the abdomen and pelvis without contrast was recommended in patients with a contraindication to

gadolinium and in association with chest CT. The frequency of these 2 examinations is the same as that for the chest/abdomen/pelvis scans.^[29,30] However, MRI is not always available, requires longer scan times, is more expensive, and has greater risks associated with gadolinium. bpMRI (morphologic T2-weighted and DWI) is a useful tool to detect the LNs for surveillance of patients with TTs. In our experience, DWI/apparent dif-

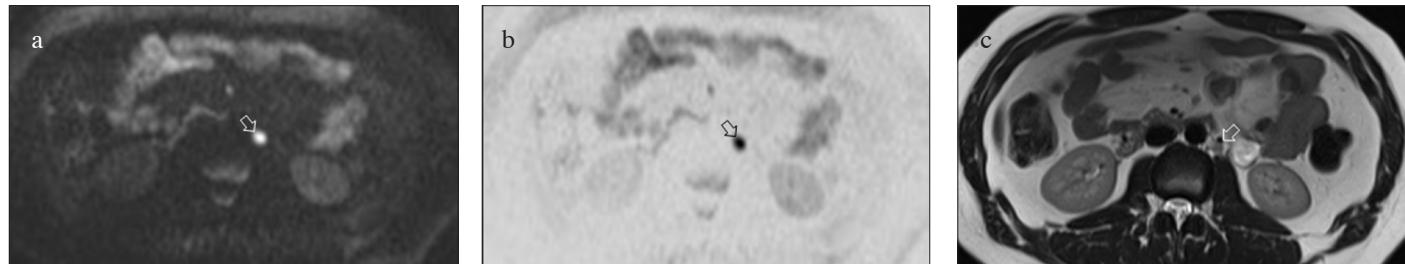


Figure 2. a-c. Abdominal biparametric 3T magnetic resonance imaging after orchiectomy for patients with seminoma shows high sensitivity of diffusion-weighted imaging (DWI) with high b-values (a) and DWI with high b-values inverted (b) in the detection and measurement of enlarged retroperitoneal lymph node (arrow in a and b) that is localized on T2-weighted imaging (arrow in c)

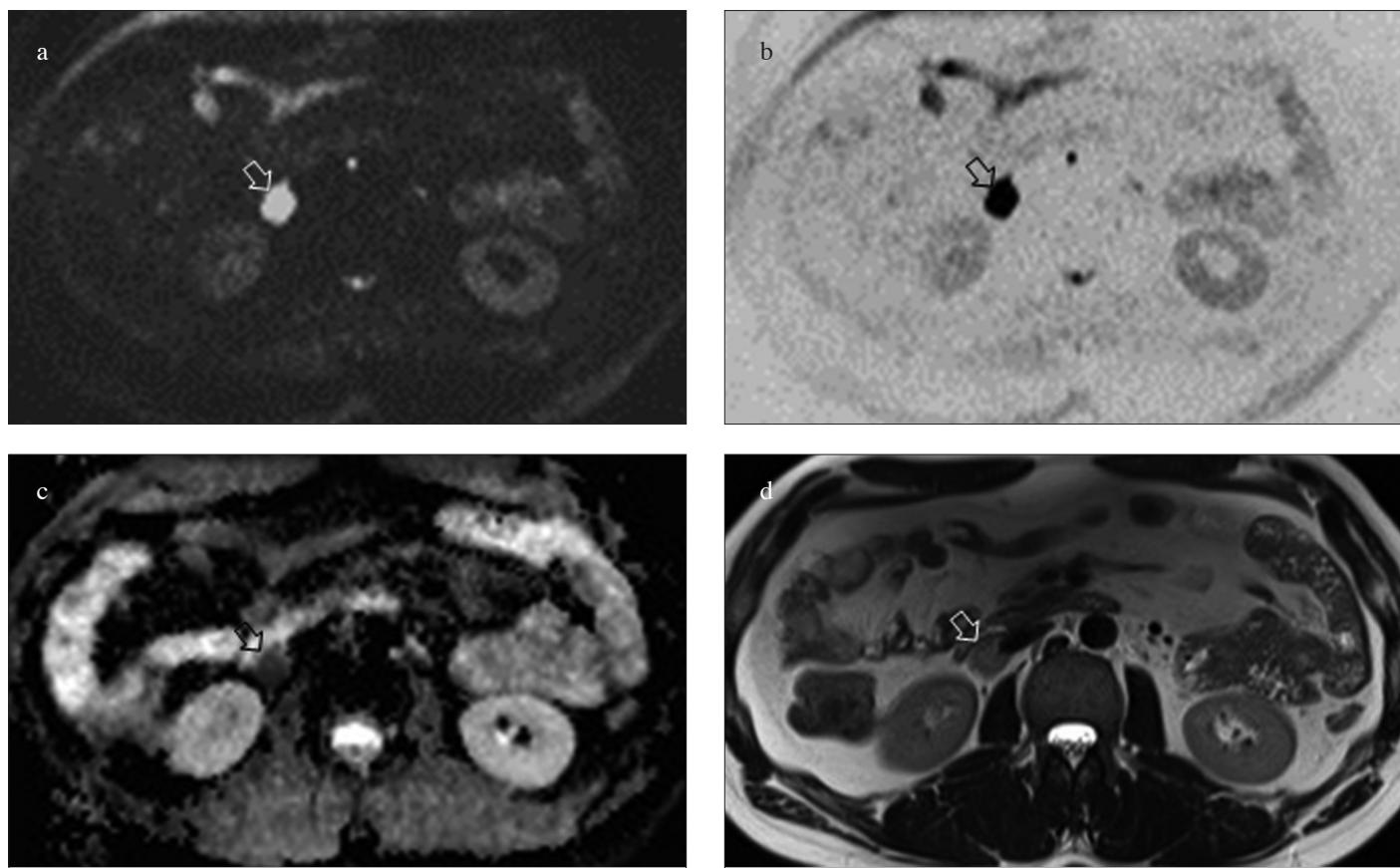


Figure 3. a-d. Abdominal biparametric 3T magnetic resonance imaging in a 26-year-old man with seminoma after radical orchiectomy. Enlarged right retroperitoneal lymph node is detected on diffusion-weighted imaging (DWI) with high b-values (arrow in a), DWI with high b-values inverted (arrow in b), diffusion apparent coefficient map (arrow in c) and localized on T2-weighted imaging (arrow and head arrow in d)

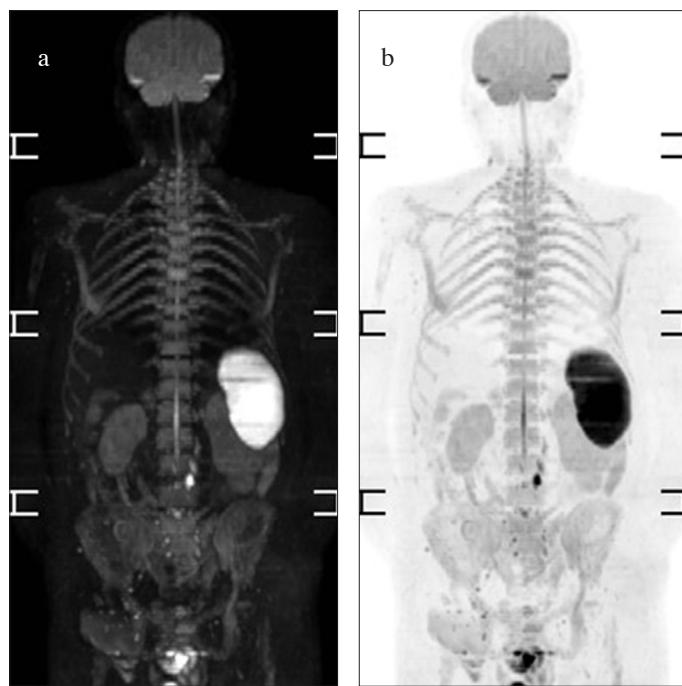


Figure 4. a, b. Whole-body biparametric magnetic resonance imaging at 1.5T in a 33-year-old man after orchiectomy for nonseminomatous germ cell tumor. Enlarged left retroperitoneal lymph node is detected on diffusion-weighted imaging (DWI) with high b-values (a) and DWI with high b-values inverted (b). Unenhanced chest computed tomography is performed to detect lung nodules

fusion coefficient (ADC), depending on the degree of restricted diffusion, bpMRI has high sensitivity in the detection of LNs; however, there are significant overlaps between the benign and malignant LNs.^[18] In a study that compared MRI with CT for detection of retroperitoneal metastasis in GCT, the sensitivity varied greatly between 78% and 96%.^[49]

MRI is a safer alternative to CT^[49,50]; the major limitation of WB-MRI is that lung metastasis can go undetected. In this subset of patients, chest CT is recommended after the WB-MRI in patients with higher suspicion for lung metastases.^[26,51]

Protocol algorithm including bpMRI for testicular tumors after orchiectomy

In Figure 1, our algorithm for patients with testicular cancer after radical orchiectomy to assess for RPLN, supradiaphragmatic LNs (SDLNs), and lung metastasis is presented. At our institution, patients who are older than 18 years with a confirmed diagnosis and no contraindication to MRI underwent 1.5T or 3T bpMRI. The MRI sequences included in the protocol, are axial T2-weighted turbo spin-echo sequences, axial gradient-echo T1-weighted Dixon (in phase, opposed phase, water, and fat), and a free breathing DWI with b-values=0, 500, and 1,000 s/

mm² with ADC reconstruction maps. This is performed in 3–12 months after radical orchiectomy. Abdominal bpMRI is preferred for patients with a low risk of metastasis for identifying the RPLNs. For patients with a high risk of metastatic disease (stage II and NSGCT), both WB-bpMRI and chest CT are performed. The goal of imaging is to accurately identify the patients with RPLNs, SDLNs, and lung metastasis.

Based on the response evaluation criteria in solid tumors (RECIST) 1.1,^[18] round or oval LNs with a short-axis diameter larger than 10 mm, loss of the normal oblong kidney bean shape, fatty hilum, or an irregular outline are considered pathologic.^[52] The LNs are divided into supradiaphragmatic, retroperitoneal, and inguinal regions.

On the abdominal or WB-bpMRI, DWI with high b-values is highly sensitive in the detection and measurement of LNs, while T2-weighted imaging is highly sensitive in their localization (Figures 2-4).

Conclusion

In the follow-up of patients with TTs after radical orchiectomy, bpMRI can provide a safer alternative to abdominal CT for surveillance of the patients, thus eliminating exposure to ionizing radiation and intravenous iodinated contrast. It can also accurately detect both RPLN and SDLN with DWI and T2-weighted imaging. In patients with NSGCT with a higher risk of pulmonary metastasis, both WB-bpMRI and chest CT scan are recommended.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – M.S., R.N., F.M.; Design – M.S., R.N., F.M.; Supervision – M.S., R.N., F.M.; Resources – M.S., A.I., D.D.C., M.T.; Materials – M.S., A.I., D.D.C., M.T., F.M.; Data Collection and/or Processing – M.S., A.I., D.D.C., F.M., M.T.; Analysis and/or Interpretation – M.S., R.N., F.M.; Literature Search – M.S., A.I., D.D.C., M.T.; Writing Manuscript – M.S., A.I.; Critical Review – M.S., R.N., F.M.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

1. Groll RJ, Warde P, Jewett MA. A comprehensive systematic review of testicular germ cell tumor surveillance. Crit Rev Oncol Hematol 2007;64:182-97. [\[Crossref\]](#)

2. Sternberg CN. The management of stage I testis cancer. *Urol Clin North Am* 1998;25:435-49. [\[Crossref\]](#)
3. Honecker F, Aparicio J, Berney D, Beyer J, Bokemeyer C, Cathomas C, et al., ESMO Consensus Conference on testicular germ cell cancer: diagnosis, treatment and follow-up. *Ann Oncol* 2018;29:1658-86. [\[Crossref\]](#)
4. International germ cell cancer collaborative group (IGCCCG). The International germ cell consensus classification: a prognostic factor based staging system for metastatic germ cell cancer. *J Clin Oncol* 1997;15:594-603. [\[Crossref\]](#)
5. Bosl GJ, Motzer RJ. Testicular germ-cell cancer. *N Engl J Med* 1997;337:242-53. [\[Crossref\]](#)
6. Kreydin EI, Barrisford GW, Feldman AS, Preston MA. Testicular cancer: what the radiologist needs to know. *AJR Am J Roentgenol* 2013;200:1215-25. [\[Crossref\]](#)
7. Yeh SD, Morse MJ, Grando R, Kleinert EL, Whitmore Jr. WF. Lymphoscintigraphic studies of lymphatic drainage from the testes. *Clin Nucl Med* 1986;11:823-7. [\[Crossref\]](#)
8. Albers P, Albrecht WB, Algarac F, Bokemeyer CD, Cohn-Cedermark GE, Fizazif K, et al. Laguna [EAU guidelines on testicular cancer: 2011 update. European Association of Urology]. *Actas Urol Esp* 2012;36:127-45. [\[Crossref\]](#)
9. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trott A. Editors. AJCC cancer staging manual. 7th ed. New York, NY: Springer; 2010.
10. Scialpi M, Palumbo B, Pierotti L, Gravante S, Piunno A, Rebbonato A, et al. Detection and characterization of focal liver lesions by split-bolus multidetector-row CT: diagnostic accuracy and radiation dose in oncologic patients. *Anticancer Res*. 2014 Aug;34(8):4335-44.
11. Scialpi M, Schiavone R, D'Andrea A, Palumbo I, Magli M, Gravante S, et al. Single-phase Whole-body 64-MDCT Split-bolus Protocol for Pediatric Oncology: Diagnostic Efficacy and Dose Radiation. *Anticancer Res* 2015;35:3041-8.
12. Scialpi M, Palumbo I, Gravante S, Buresta T, D'Andrea A, Pierotti L, et al. FDG PET and Split-Bolus Multi-Detector Row CT Fusion Imaging in Oncologic Patients: Preliminary Results. *Radiology* 2016;278:873-80. [\[Crossref\]](#)
13. Runge VM. Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA's Pharmacovigilance and Risk Assessment Committee recommendation for suspension of the marketing authorizations for 4 linear agents. *Invest Radiol* 2017;52:317-23. [\[Crossref\]](#)
14. Scialpi M, D'Andrea A, Martorana E, Malaspina CM, Aisa MC, Napoletano M, et al. Biparametric MRI of the prostate. *Turk J Urol* 2017;43:401-9. [\[Crossref\]](#)
15. Scialpi M, Aisa MC, D'Andrea A, Martorana E. Simplified Prostate Imaging Reporting and Data System for Biparametric Prostate MRI: A Proposal. *AJR Am J Roentgenol* 2018;211:379-82. [\[Crossref\]](#)
16. Schmidt G, Dinter D, Reiser MF, Schoenberg SO. The uses and limitations of whole-body magnetic resonance imaging. *Dtsch Arztebl Int* 2010;107:383-9. [\[Crossref\]](#)
17. Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Frédéric Lecouvet F. Whole Body MRI and oncology: recent major advances. *Br J Radiol* 2018;91:20170664. [\[Crossref\]](#)
18. Hedgire SS, Pargaonkar VK, Elmi A, Harisinghani AM, Harisinghani MG. Pelvic nodal imaging. *Radiol Clin North Am* 2012;50:1111-25. [\[Crossref\]](#)
19. Epstein BE, Order SE, Zinreich ES. Staging, treatment, and results in testicular seminoma. A 12-year report. *Cancer* 1990;65:405-11. [\[Crossref\]](#)
20. Husband JE, Barrett A, Peckham MJ. Evaluation of computed tomography in the management of testicular teratoma. *Br J Urol* 1981;53:179-83. [\[Crossref\]](#)
21. Richie JP, Garnick MB, Finberg H. Computerized tomography: how accurate for abdominal staging of testis tumors? *J Urol* 1982;127:715-7. [\[Crossref\]](#)
22. Hilton S, Herr HW, Teitcher JB, Begg CB, Castellino RA. CT detection of retroperitoneal lymph node metastases in patients with clinical stage I testicular nonseminomatous germ cell cancer: assessment of size and distribution criteria. *AJR Am J Roentgenol* 1997;169:521-5. [\[Crossref\]](#)
23. Jing B, Wallace S, Zornoza J. Metastases to retroperitoneal and pelvic lymph nodes: computed tomography and lymphangiography. *Radiol Clin North Am* 1982;20:511-30.
24. Strohmeyer T, Geiser M, Ackermann R, Mumperow E, Hartmann M. Value of computed tomography in the staging of testicular tumors. *Urol Int* 1988;43:198-200. [\[Crossref\]](#)
25. Thomas JL, Bernardino ME, Bracken RB. Staging of testicular carcinoma: comparison of CT and lymphangiography. *AJR Am J Roentgenol* 1981;137:991-6. [\[Crossref\]](#)
26. Nichols CR, Roth B, Albers P, Einhorn LH, Foster R, Daneshmand S, et al. Active surveillance is the preferred approach to clinical stage I testicular cancer. *J Clin Oncol* 2013;31:3490-3. [\[Crossref\]](#)
27. Tarin TV, Sonn G, Shinghal R. Estimating the risk of cancer associated with imaging related radiation during surveillance for stage I testicular cancer using computerized tomography. *J Urol* 2009;181:627-32. [\[Crossref\]](#)
28. Silva MV, Motamedinia P, Badalato GM, Hruby G, McKiernan JM. Diagnostic radiation exposure risk in a contemporary cohort of male patients with germ cell tumor. *J Urol* 2012;187:482-6. [\[Crossref\]](#)
29. Brunereau L, Bruyère F, Linassier C, Baulieu L. The role of imaging in staging and monitoring testicular cancer. *Diagn Interv Imaging* 2012;93:310-8. [\[Crossref\]](#)
30. Rud E, Langberg CW, Baco E, Lauritzen P, Sandbæk G. MRI in the Follow-up of Testicular Cancer: Less Is More. *Anticancer Res* 2019;39:2963-8. [\[Crossref\]](#)
31. Harvey ML, Geldart TR, Duell R, Mead GM, Tung K. Routine computerised tomographic scans of the thorax in surveillance of stage I testicular non-seminomatous germ-cell cancer--a necessary risk? *Ann Oncol* 2002;13:237-42. [\[Crossref\]](#)
32. Meyer CA, Conces DJ. Imaging of intrathoracic metastases of nonseminomatous germ cell tumors. *Chest Surg Clin N Am* 2002;12:717-38. [\[Crossref\]](#)
33. White PM, Adamson DJ, Howard GC, Wright AR. Imaging of the thorax in the management of germ cell testicular tumours. *Clin Radiol* 1999;54:207-11. [\[Crossref\]](#)
34. Steinfeld AD, Macher MS. Radiologic staging of chest in testicular seminoma. *Urology* 1990;36:428-30. [\[Crossref\]](#)
35. Horan G, Rafique A, Robson J, Dixon AK, Williams MV. CT of the chest can hinder the management of seminoma of the testis; it detects irrelevant abnormalities. *Br J Cancer* 2007;96:882-5. [\[Crossref\]](#)

36. Fernandez EB, Colon E, McLeod DG, Moul JW. Efficacy of radiographic chest imaging in patients with testicular cancer. *Urology* 1994;44:243-9. [\[Crossref\]](#)
37. Gietema JA, Meinardi MT, Sleijfer DT, Hoekstra HJ, van der Graaf WT. Routine chest X-rays have no additional value in the detection of relapse during routine follow-up of patients treated with chemotherapy for disseminated non-seminomatous testicular cancer. *Ann Oncol* 2002;13:1616-20. [\[Crossref\]](#)
38. Ambrosini V, Zucchini G, Nicolini S, Berselli A, Nanni C, Allegri V, et al. 18F-FDG PET/CT impact on testicular tumours clinical management. *Eur J Nucl Med Mol Imaging* 2014;41:668-73. [\[Crossref\]](#)
39. Bachner M, Loriot Y, Gross-Goupil M, Zucali PA. 2-(1)fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for post-chemotherapy seminoma residual lesions: a retrospective validation of the SEMPET trial. *Ann Oncol* 2012;23:59-64. [\[Crossref\]](#)
40. Becherer A, De Santis M, Karanikas G, Szabó M, Bokemeyer C, Dohmen BM, et al. FDG PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. *Eur J Radiol* 2005;54:284-8. [\[Crossref\]](#)
41. Hinz S, Schrader M, Kempkensteffen C, Bares R, Brenner W, Krege S, et al. The role of positron emission tomography in the evaluation of residual masses after chemotherapy for advanced stage seminoma. *J Urol* 2008;179:936-40. [\[Crossref\]](#)
42. De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Sellner F, et al. 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. *J Clin Oncol* 2004;22:1034-9. [\[Crossref\]](#)
43. Treglia G, Sadeghi R, Annunziata S, Caldarella C, Bertagna F, Giovanella L. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: systematic review and meta-analysis. *Biomed Res Int* 2014;2014:852681. [\[Crossref\]](#)
44. Krege S, Beyer J, Souchon R, Albers P. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. *Eur Urol* 2008;53:478-96. [\[Crossref\]](#)
45. Oechsle K, Hartmann M, Brenner W, Venz S, Weissbach L, Franzius C, et al. [18F]Fluorodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. *J Clin Oncol* 2008;26:5930-5. [\[Crossref\]](#)
46. Sanchez D, Zudaire JJ, Fernandez JM, Lopez J, Arocena J, Sanzet G, et al. 18F-fluoro-2-deoxyglucose-positron emission tomography in the evaluation of nonseminomatous germ cell tumours at relapse. *BJU Int* 2002;89:912-6. [\[Crossref\]](#)
47. Dotzauer R, Thomas C, Jager W. The use of F-FDG PET/CT in testicular cancer. *Transl Androl Urol* 2018;7:875-8. [\[Crossref\]](#)
48. Huddart RA, O'Doherty MJ, Padhani A, Rustin GJS, Mead GM, Joffe JK, et al. 18fluorodeoxyglucose positron emission tomography in the prediction of relapse in patients with high-risk, clinical stage I nonseminomatous germ cell tumors: preliminary report of MRC Trial TE22--the NCRI Testis Tumour Clinical Study Group. *J Clin Oncol* 2007;25:3090-5. [\[Crossref\]](#)
49. Sohaib SA, Koh DM, Barbachano Y, Parikh J, Husband JES, Dearnaley DP, et al., Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours. *Clin Radiol* 2009;64:362-7. [\[Crossref\]](#)
50. Hansen J, Jurik AG. Diagnostic value of multislice computed tomography and magnetic resonance imaging in the diagnosis of retroperitoneal spread of testicular cancer: a literature review. *Acta Radiol* 2009;50:10641070. [\[Crossref\]](#)
51. MacVicar D. Staging of testicular germ cell tumours. *Clin Radiol* 1993;47:149-58. [\[Crossref\]](#)
52. Koh DM, Hughes M, Husband JE. Cross-sectional imaging of nodal metastases in the abdomen and pelvis. *Abdom Imaging* 2006;31:632-43. [\[Crossref\]](#)