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ABSTRACT

Objective: Artificial intelligence (Al) is used in various urological conditions such as urolithiasis, pediatric
urology, urogynecology, benign prostate hyperplasia (BPH), renal transplant, and uro-oncology. The various
models of Al and its application in urology subspecialties are reviewed and discussed.

Material and methods: Search strategy was adapted to identify and review the literature pertaining to the
application of Al in urology using the keywords “urology,” “artificial intelligence,” “machine learning,”
“deep learning,” “artificial neural networks,” “computer vision,” and “natural language processing” were

included and categorized. Review articles, editorial comments, and non-urologic studies were excluded.

Results: The article reviewed 47 articles that reported characteristics and implementation of Al in urologi-
cal cancer. In all cases with benign conditions, artificial intelligence was used to predict outcomes of the
surgical procedure. In urolithiasis, it was used to predict stone composition, whereas in pediatric urology
and BPH, it was applied to predict the severity of condition. In cases with malignant conditions, it was ap-
plied to predict the treatment response, survival, prognosis, and recurrence on the basis of the genomic and
biomarker studies. These results were also found to be statistically better than routine approaches. Appli-
cation of radiomics in classification and nuclear grading of renal masses, cystoscopic diagnosis of bladder
cancers, predicting Gleason score, and magnetic resonance imaging with computer-assisted diagnosis for
prostate cancers are few applications of Al that have been studied extensively.

Conclusions: In the near future, we will see a shift in the clinical paradigm as AI applications will find their
place in the guidelines and revolutionize the decision-making process.

Keywords: Artificial intelligence; deep learning; machine learning; prostate cancer; urolithiasis; urology.

data, the future health care system is likely to
move toward Al outpatient clinics and preven-
tive medicine. Al provides more accuracy and

Introduction

Artificial intelligence (Al) refers to the compu-
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tational capability of the machine to mimic and
perform human cognitive tasks. It is causing
a paradigm shift in terms of providing health
care and decision-making for the clinicians.
The advances in the medical technologies
used in health care, such as electronic medical
records (EMRs), are providing humongous
amounts of data.l! This large amount of data
allows computer-based predictions and deci-
sions to be made to aid in better patient care
(Figure 1). By 2025, the growth rate of Al
applications in health care is expected to be
29.3%, and the global revenue is estimated to
increase by 40%."*! With the available patient

reliable clinical decisions; hence, it is possibly
going to be an integral part of the health care
system.

The four subfields of Al in health care are as
follows:

1. Machine learning (ML): ML is statisti-
cal technique-based programming that allows
a computer system to learn and recognize
patterns to model without explicit instruc-
tions. ML uses procedural computer programs
wherein machines are trained to learn, detect
data patterns, compute, and infer from the
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Figure 1. A schematic process chart for building an artificial intelligence model

datasets provided. It is observed that the machines are able
to generate results similar to those generated by human intel-
ligence.

2. Natural language processing (NLP): It illustrates the ability
of a computer to comprehend the written and spoken language.
Some applications that are possible through NLP include lan-
guage translation, text processing, and speech recognition. In
order to extract useful information and reliable details from
patient services and provide “virtual assistance” for physi-
cians, a comprehensive data research such as electronic medical
record (EMR), doctor’s notes, pharmaceutical products, and
medical imaging can also be analyzed.

3.Deep learning (DL) and artificial neural networks (ANNs):
In the network architectural layers, the ANN comprises of indi-
vidual units that function like artificial neurons programmed
to accomplish computer tasks and recognize complex patterns.
DL requires training massive datasets of multilayered neural
networks. Deep neural convolution network (DCNN) is a com-
monly used ANN, which is effective when used in digitized
image pattern identification or recognition.

e Alis widely used in the diagnosis, treatment, and outcome pre-
diction in various urological conditions.

e In urolithiasis, Al is used to detect stone composition and to
predict spontaneous passage of stone.

» Al applications in prostate carcinoma are used for the diag-
nosis-Gleason scoring, treatment decisions-making, and even
predicting the disease-free survival.

4. Computer vision: Computer vision technology is used for
visual search, trend forecasting, augmented reality, and virtual
reality. The radiological and pathological images and simple
and complex endoscopic videos can be used by machines to
understand the details and patterns in the images in order to
identify the tumors or malignancy present in the diagnostic
images. The latest experience at human level in diagnostic
imaging has already shown that Al has extensive “knowledge”
to identify tumors. Computer vision can also be used for analy-
sis and grading of pathological tissue slides.

Al is increasingly applied not only to the diagnosis of urologi-
cal conditions but also its management and predictive analysis.
B1 This article focuses on addressing the application of AI and
Al algorithms in urological subspecialties. This article reviews
the use of Al in various benign and malignant conditions such as
urolithiasis, pediatric urology, urogynecology, benign enlarge-
ment of the prostate, renal transplant, and uro-oncology pertain-
ing to the kidneys, bladder, prostate, and testes.

Clinical and Research Consequences
Application of Al in Benign Urological Conditions

Urolithiasis

In the past few decades, there has been a rapid transition in the
analysis, treatment and monitoring of cases with urolithiasis, the
recent entry being applications of Al to identify the stone from
computed tomography (CT) and ultrasound (US) images™~,
detecting stone composition'®”, predicting spontaneous stone
passage!®®! and even the outcomes of endourological procedures
(Table 1).110-131
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Table 1. Studies looking at applications of Al in benign urological conditions
Algorithm/Model

Study
A. Urolithiasis

Parakh et al.!*!

Chiang et al.”!

Kazemi et al.l®!

Kriegshauser
et al.l”!

Eken et al.!®!

Dal Moro et al.”!

Shabaniyan
et al.l!"

Objective

Urinary stone
detection on unen-
hanced CT images

To identify asso-
ciation between
stone disease and
genetic polymorp-
hisms, patient
habits

For early detecti-
on of the type of
kidney stone and
the most influenti-
al parameters

To investigate use
of single-source
dual-energy com-
puted tomography
(ssDECT) for the

characterization of

renal stones.

To compare Al
models with LR
by applying on
medical dataset

To predict the
spontaneous

passage of ureteral

stones in patients
with renal colic

To predict posto-
perative outcome
of PCNL

Study Design

e 535 patients
(279 stones pre-
sent; 256 stones
absent)

¢ 100 scans (test
data)

e 151 (calcium
oxalate stone)
patients

¢ 105 healthy
controls

* 936 patients
dataset
o 42 features

¢ 32 stone dataset

e 227 patients

e 176 urinary
stones

* 51 no stones

* 1163 patients
(402 found
valuable)

¢ nine clinical
factors

e 254 patients
e 26 variables

Convolutional
neural network
(CNN)

¢ Discriminant
analysis

¢ Artificial Neural
network (ANN)

¢ -Bayesian
model-Decision
Trees

¢ ANN

¢ Rule-based
classifiers

-Multiparametric
algorithms

¢ ANN

* Genetic algo-
rithm (GA)

¢ Logistic regres-
sion analysis
(LR)

Linear program-
ming support
vector machine
(LPSVM)

e Machine
learning (ML)
techniques such
as sequential
forward selecti-
on and Fisher’s
discriminant
analysis

Accuracy

>90%

¢ Genetic factors

DA: 64% ANN:

65 %
¢ Genetic and
Env. Factors

DA: 75% ANN:

89%

97.1% (ensemble
model)

* 97% to distingu-
ish uric acid and

non-uric acid
stones

* 72 % to distin-
guish non-uric
acid stone
subtypes

NA

NA

94 8%

Sensitivity

NA

NA

NA

NA

ANN: 94.9%
GA: 67.6%
LR:95.5%

84.5%

Requirement of
Stent placement:
85.2% Require-
ment of blood
transfusion: 95%

Specificity

NA

NA

NA

NA

ANN: 78%
GA: 76%
LR: 48%

86.9%

NA




Turk J Urol 2020; 46(Supp. 1): S27-S39
DOI: 10.5152/tud.2020.20117

Table 1. Studies looking at applications of Al in benign urological conditions (Continue)

Study

Aminsharifi
et al.ll!

Kadlec et al.l'?!

Seckiner et al.l'?!

Objective

To predict mul-
tiple outcomes
after percutaneous
nephrolithotomy
(PCNL) and
compare with
GSS and CROES
nomogram

For outcome
prediction after
various forms of
endourological
intervention

To predict stone
free status after
ESWL

B. Benign Prostatic Hyperplasia

Torshizi et al '

Sonke et al."”!

To diagnose the
severity of BPH
and suggest app-
ropriate treatment

To diagnose BPH
and compare with
regression analysis

C. Pediatric Urology

Bagli et al.l'%)

Logvinenko
et al.ll”!

Blum et al.!"®

D. Urogynecology
Sabadell et al.”*”!

To predict sonog-
raphic outcome
after pyeloplasty
in children with
ureteropelvic junc-
tion obstruction

To predict patients
at high risk of
VCUG abnorma-
lities, based on
RBUS findings

To predict the
need for surgery in
UPJO cases based
on dynamics of
renogram

To predict occur-
rence of SUI after
prolapse surgery
and as a diagnostic
tool

Study Design

146 adult pati-
ents

382 renal units

139 patients
(training set)
32 patients
(validation set)
32 patients (test
set)

44 patients

1903 patients

84 children
training set

16 children test
set

2259 patients

55 patients
45 features

169 patients

Algorithm/Model

e ML-based SVM
model

¢ nonlinear LR
model

ANN

Fuzzy system
expert

ANN

ANN

ANN Multivariate
LR analysis

e Linear support
vector machine
(SVM)

ML algorithm

Accuracy

80%-95.1%

Classification ac-
curacy of 69.6%

88.7% in the test
group

~90%

NA

100%

NA

93%

NA

Sensitivity

Stone free status:
92% Need for
repeat PCNL: 97%
Need for ESWL:
82% Need for
URS: 91%

Stone free status:
75.3% Need for
sec. procedure:
30%

NA

NA

1%

100%

For any grade
VUR

* ANN: 64%
* MLR: 84%

91%

NA

Specificity

NA

Stone free status:
60.4% Need for
sec. procedure:
98.3%

NA

NA

69%

100%

For any grade
VUR

* ANN: 60%
* MLR: 25%

96%

NA
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Table 1. Studies looking at applications of Al in benign urological conditions (Continue)
Algorithm/Model Accuracy

Study

Jelovsek et al.l?!!

Objective Study Design

To predict recur- ¢ 1301 patients
rence, complica-

tions, and health

status improve-

ment after prolapse

surgery

E. Renal Transplant

Atallah et al.”?*

Greco et al.l??!

Goldfarb et al.?¥

To predict 5-year  * 2728 patients
graft survival (70% training
and 30% testing)

To predict graft fa- ¢ 194 patients
ilure and associa-

tion with BMI and

other risk factors

To predict cadave- 37,407 patients
ric graft survival ~ dataset
over three years

LR models NA NA

¢ Naive Bayes Ba- 80.77% 81.2%
sed Feature Se-
lector (NBBES)
Algorithm
¢ K-nearest neigh-
bor Algorithm
(KNN)

e ML algorithms NA 88.2%
¢ Decisional Trees

Logistic regression 65% NA
based model Tree-
based model

Sensitivity

Specificity

NA

NA

73.8%

NA

based on pretrans-
plant variables

CT: Computed Tomography; CNN: Convolutional Neural Network; ANN: Artificial Neural Network; DA: Discriminant Analysis; ssDECT: Single-Source Dual-Energy
Computed Tomography; LR: Logistic regression; GA: Genetic Algorithm; LP SVM: Linear Programming Support Vector Machine; PCNL: Percutaneous Nephrolithotomy;
ML: Machine Learning; GSS: Guys Stone Score; CROES: Clinical Research Office of the Endourological Society; SVM: Support Vector Machine; ESWL: Extracorporeal
Shock Wave Lithotripsy; URS: Ureterorenoscopy; BPH: Benign Prostatic Hyperplasia; VCUG: Voiding Cystourethrogram; RBUS: Renal Bladder Ultrasound; NBBFS:
Naive Bayes Based Feature Selector; KNN: K-Nearest Neighbor; BMI: Body Mass Index; UPJO: Uretero-Pelvic Junction Obstruction

Parakh et al.*!studied the diagnostic performance of the convo-
Iution neural network (CNN) on CT images for detection of uri-
nary stones in 535 adult patients assumed to have renal calculi
using two scanners. The first scanner identified the urinary tract,
and the next one detected the stone. Using nine different varia-
tion models, it achieved an accuracy of more than 90%. The
study concluded that the efficiency of CNNs can be improved
by the use of transfer learning with datasets augmented with
labeled images. Shabaniyan et al."® developed a decision sup-
port system using ML techniques to predict the outcomes of
surgical treatment for renal calculus. The algorithm was trained
with a dataset of 254 patients and 26 parameters, which com-
prised variables from patients’ history, renal calculus composi-
tion, and laboratory investigations. This model achieved an
accuracy of 94.8%, 85.2%, and 95% in predicting outcomes
of a procedure, predicting whether patient will require a stent
after the procedure, and predicting the need for blood transfu-
sion, respectively. Aminsharifi et al."" studied data of 146 adult
patients in whom percutaneous nephrolithotomy (PCNL) was
done to validate efficiency of a machine-based learning algo-
rithm for predicting the outcomes after PCNL and to compare
the results with Clinical Research Office of Endourological

Society nomogram and Guy’s Stone Score (GSS). This program
predicted the PCNL results with an accuracy of up to 95%.

Benign Enlargement of the Prostate

Many questionnaires are available for the clinical prediction of
benign prostatic hyperplasia (BPH), yet the results are unreli-
able and inaccurate. Various Al techniques and ANN models
such as multilayered back propagation method to predict the
severity of obstruction on the basis of noninvasive tests have
been used (Table 1).'%1 Torshizi et al.'* applied fuzzy intel-
ligent systems in predicting the severity of BPH and also rec-
ommended the treatment required for it. The study consisted of
two models. The first model predicted the severity, whereas the
second model helped to make a treatment decision. The results
were then compared for accuracy and validation with an expert
panel. The accuracy achieved was nearly 90%.

Pediatric Urology

Al has been used in the field of pediatric urology for predicting
the outcome of surgical procedures!®, severity of the condi-
tion on the basis of imaging as well as detecting abnormalities
in imaging (Table 1).'"'® Bagri et al.''® applied computerized
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ANN to predict the outcomes after pyeloplasty on the basis of
US findings in children with uretero-pelvic junction obstruc-
tion. The prediction was based on whether postoperatively the
results were “significantly improved,” “improved,” “same,” or
“worse.” The results showed 100% sensitivity and specificity
for all four-outcome measures. Both multivariate analysis and
ML algorithms were used by Logvinenko et al."”'to evaluate
whether the renal and bladder ultrasound (RBUS) could predict
the abnormalities on voiding cystourethrogram (VCUG) for
conditions such as vesico-ureteric reflux and congenital ure-
thral abnormalities. The results showed that RBUS was a poor
predictor of the abnormalities of VCUG and both could only
complement each other but cannot replace them.

Urogynecology

On the basis of urinary incontinence data obtained from the
wearable devices, Al techniques were applied to predict the
time and number of incontinence episodes and the outcome of
conservative or medical management for stress urinary inconti-
nence (SUI)." Models to predict the occurrence of complica-
tions such as SUI after prolapse surgery, recurrence, and overall
outcomes of surgery were also studied on the basis of the data
available from various randomized controlled trials (Table
1).20211In the near future, Al applications can be used to provide
personalized care based on the patient demographics and clini-
cal characteristics of every individual.

Renal Transplant

The outcome of kidney transplant prediction is very important.
Various studies have been conducted to predict the outcomes
of kidney transplantation using ANN and ML algorithms, as
described (Table 1).2224 Atallah et al.*? proposed a predic-
tion method by combining two methods-Bayes and k-nearest
neighbor-which achieved more accuracy by choosing minimum
number of features. It was based on data mining techniques to
predict five-year graft survival after transplantation. This new
proposed prediction method comprises three stages: data prepa-
ration stage, feature selection stage, and prediction stage. This
prediction method can be used in other transplant datasets to
measure the graft survival.

Application of AI in Uro-Oncology

Testicular Malignancy

Not much has been studied about the applications of Al in
testicular malignancy. Baessler et al.?> applied ML-based CT
radiomics to determine whether the lymph nodes dissected in
patients with metastatic or advanced nonseminomatous testicu-
lar germ cell tumor were malignant or benign. The model cor-
rectly classified with an accuracy of 0.81 (area under the curve
[AUC]), 88% sensitivity, and 72% specificity.

Renal Cell Carcinoma

ML and DL algorithms based on CT-texture analysis were
applied for differentiating renal masses such as angiomyoli-
poma, clear cell renal cell carcinoma (ccRCC), papillary renal
cell carcinoma, and oncocytoma2! to predict the nuclear
grade and to identify certain genetic mutations to predict the
prognosis, recurrence, and survival outcomes (Table 2). Kocak
et al.”used CT-texture analysis, applied ML techniques to
predict and identify the nuclear grade (Furhman) of ccRCC,
and compared the results with those obtained with percutane-
ous biopsy. The results were comparable, and the maximum
predictive value was achieved with the use of the support vec-
tor machine (SVM). The algorithm could differentiate nuclear
grades in 85.1% of ccRCC cases. Ding et al.* also conducted
a similar study showing increased precision in classifying the
grade of ccRCC.

Biomarkers and signatures based on more than one gene expres-
sion have been developed in recent years for predicting the
ccRCC overall survival (OS) and prognosis of the disease. Li et
al.* developed a model based on 15 genes, which could help
predict the prognosis and survival. They found that the group
with a higher risk had substantially poorer prognosis and sur-
vival than the group with patients having lower risk. The risk
groups were not associated with patient characteristics such as
sex or age but were related to hemoglobin levels. They were
also associated with tumor features such as size and grade.

PBRMI1 mutations are the second most common mutations
found in ccRCC. Kocak et al.*applied ANN- and ML-based
algorithms to identify PBRM1 mutations based on CT scan
texture analysis. Overall, 88% of ccRCC with PBRM1 mutation
status was correctly identified by ANN. On the basis of these
results, future studies can be conducted to develop noninvasive
biomarkers for identifying histopathological subtypes to predict
the prognosis and response to treatment.

Bladder Cancer

ML algorithms, DCNN models, genetic algorithms, and SVMs
have been applied in bladder cancer for improving cystoscopic
diagnosis and prediction of prognosis and survival (Table 2).1**
¥l Tkeda et al.’” made a competent CNN by training it with
2102 cystoscopic pictures with an aim to increase the efficiency
in diagnosis of bladder cancer using Al. It achieved sensitivity
and specificity of 89.7% and 94.0%, respectively. Lorencin et
al.’¥ used the data of 1997 and 986 images with and without
bladder cancer, respectively, to train multilayer perceptron
along with DCNN for the diagnosis of bladder malignancy. It
showed promising results, with AUC value reaching up to 0.99.
Wang et al.*®! achieved more than 75% accuracy by using least
squares SVM in predicting the five-year overall and cancer-
specific mortality of patients post radical cystectomy.
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Table 2. Studies looking at application of AI in urological malignancies

Study

Objective

A. Renal Cell Carcinoma(RCC)

Kocak et al.*"

Feng et al.>"!

Coy et al.™®!

Ding et al.*’!

Li et al.B

Kocak et al.*!

To distinguish
the major subt-
ypes of RCC

To differentiate
angiomyolipoma
(AML) and RCC
based on texture
analysis of CT
images

To distinguish
ccRCC and on-
cocytoma from
MDCT images

To preoperatively
distinguish high
nuclear grade
from low nuclear
grade in ccRCC

To predict sur-
vival in patients
with ccRCC
based on gene
expression

To identify the
mutation status
of PBRM1 gene
in ccRCC pati-
ents

Study Design

e 68 RCC pati-
ents for inter-
nal validation

e 26 RCC pati-
ents for exter-
nal validation

e 275 CT images
for texture
features

* 58 patients
o 42 features

¢ 4000 iterations
(90% training
and 10% vali-
dation)

e 179 patients

e 02 cases
(for validation)

N=533 (training
dataset) Risk
score model
based on 15 ge-
nes N=101 (test
dataset)

e 45 patients
(29 without
mutation; 16
with mutation)

e 161 labeled
segmentations
(87 without
mutation; 74
with mutation)

Algorithm/Model

Artificial Neural
Network (ANN)
Support vector

machine (SVM)

¢ Machine
Learning (ML)
based quanti-
tative texture
analysis

* SVM with re-
cursive feature
elimination

* Synthetic
minority
oversampling
technique
(SMOTE)

Deep Learning
(DL) based Go-
ogle TensorFlow
software

o Logistic Reg-
ression (LR)
model

e [east absolute
shrinkage and
selection ope-
rator (LASSO)
for texture
score

* ML-based ran-
dom forest va-
riable hunting
Cox regression
analysis

e ML-based
quantitative
CT-texture
analysis such
as

¢ Random Forest
(RF) algorithm

e ANN

Accuracy

ANN: 84.60%
SVM: 69%

93.9%

74.4%

NA

NA

ANN: 88.22%
RF: 95%

Sensitivity

ANN: 69%
SVM: 71%

87.8%

85.8%

NA

NA

NA

Specificity

ANN: 100%
SVM: 100%

100%

NA

NA

NA

NA
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Table 2. Studies looking at application of Al in urological malignancies (Continue)

Study

Objective

B. Bladder Carcinoma

Ikeda et al.’?!

Lorencin et al.’?

Hashemi et al.’%

Eminaga et al.®!

Wang et al ¢!

Gavriel et al.B”!

To improve
cystoscopic diag-
nosis of bladder
cancer using Al

To use multilayer
perceptron met-
hod for diagnosis
of bladder cancer
from cystoscopic
images

To classify
cystoscopic
bladder images
using Al

To perform
diagnostic clas-
sification based
on cystoscopic
images using
DL-CNN

To predict blad-
der cancer prog-
nosis in terms of
five-year overall
and cancer-speci-
fic mortality

To predict five-
year prognosis of
bladder cancer

Study Design

e 2102 images
(1671 normal
tissue; 431
tumor lesions)

e 8:2 (training:
test set)

* 1997 bladder
cancer images

e 986 non-
cancer tissues
images

* 540 cystos-
copic bladder
images

e 479 patients

* 18,681 images
(generated
with 10 degree
grades)

* 60% training
set-10% vali-
dation set

* 30% test set

e 117 bladder
cancer patients

e 78 patients

diagnosed with

MIBC

Algorithm/Model

Convolutional
Neural Network
(CNN)

e Multilayer Per-
ceptron (MLP)

e Laplacian edge
detector

e Multilayer ne-
ural networks

* Genetic algo-
rithm (GA)

¢ Deep Learning
CNN (DL-
CNN)

o Xception
model

e ResNet50
model

¢ InceptionV3

* VGG-19

* VGG-16

¢ QOutput-based
transfer lear-
ning approach
with least
square support
vector machine
(LS-SVM)

e ML-based en-
semble model

Accuracy

NA

NA

7% decrease

in error on
classification as
compared with
other methods

F1 scores Xcep-
tion: 99.52%
ResNet: 99.48%

¢ 5 years overall
mortality
Proposed
classifier(v1l):
76.97%
Proposed
classifier(v2):
76.18%
S-year cancer-
specific morta-
lity Proposed
classifier(v1l):
74.85%
Proposed
classifier(v2):
75.15%

94 8%

Sensitivity

89.7%

NA

NA

NA

5 years overall
mortality
Proposed
classifier(v1l):
78.48%
Proposed
classifier(v2):
78.29%

e 5-year cancer-
specific morta-
lity Proposed
classifier(v1l):
90.26%
Proposed
classifier(v2):
92.38%

89.5%

Specificity

94%

NA

NA

NA

¢ 5 years overall
mortality
Proposed
classifier(v1):
75.79%
Proposed
classifier(v2):
74.33%
S-year cancer-
specific morta-
lity Proposed
classifier(v1):
38% Proposed
classifier(v2):
31%

97 4%
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Table 2. Studies looking at application of Al in urological malignancies (Continue)

Study

Hasnain et al.*®!

Bartsch et al.?”

Wu et al 40!

Objective

To predict
postcystectomy
recurrence and
survival

To predict recur-
rence of NMIBC
based on genome
profile

To compare
different DL-
CNN models to
predict response
to treatment in
bladder cancer
(TO prediction)

C. Prostate Carcinoma

Strom et al.4!

Bulten et al.*?

Viswanath et
al [+

To diagnose and
grade prostate
cancer in biop-
sies

To assign Gle-
ason grade to
prostate biopsies
using Al

To compare va-
rious classifier in
detecting CaP on
t2W MRI images
using radiomic
texture features

Study Design

¢ Dataset of
3503 patients

e 112 frozen
NMIBC speci-
mens

e 21 gene classi-
fier set

e 123 CT scans
(pre and post-
treatment)

Training set-976
patients (6682
slides) Test
set-246 patients
(1631 slides)

1243 patients
(5759 biopsies)

e 85T2W MRI
datasets

Algorithm/Model

Ensemble ML-

based models

¢ Support vector
machine
(SVM)

e K-nearest
neighbor Algo-
rithm (KNN)

¢ Random Forest

¢ Gradient-bo-
osted trees
(GBT)

e ML cased
genetic
programming
algorithm

Multiple DL-
CNN models
with structure
modification and
layer freezing

ANN

DL system

¢ Quadratic
Discriminant
Analysis
(QDA) -Sup-
port Vector
Machines
(SVMs)

¢ Naive Bayes
Decision Trees
(NBDT)

Accuracy

NA

NA

Base DL-CNN
70%

NA

Benign versus
malignant: 96%-
97%

Grade group 2 or
more: 79%-83%
Grade group 3 or
more: 76%-82%

NA

Sensitivity

>70%

Test Set Five
gene combined
rule: 69%

Three gene com-
bined rule: 71%

Base DL-CNN
60%

99%

Benign versus
malignant:

97 4%

Grade group 2 or
more: 86%-95%
Grade group 3 or
more: 76%-92%

NA

Specificity
>70%

Test Set Five
gene combined
rule: 62%

Three gene com-
bined rule: 67%

Base DL-CNN
80%

94.9%

Benign versus
malignant: 83%-
100%

Grade group 2 or
more: 52%-70%
Grade group 3 or
more: 72%-782%

NA
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Table 2. Studies looking at application of Al in urological malignancies (Continue)

Study

Wildeboer et
al ]

Deng et al.*!

de la Calle et
al 47

Bibault et al.*®!

Objective

For automated
localization of
CaP based on
radiomics of
TRUS

For treatment
stratification of
patients with me-
tastatic castrate
resistant CaP

To predict
recurrence and
progression of
CaP based on bi-
omarker analysis

To predict sur-

Study Design

¢ 50 men with
biopsy confir-
med CaP

e 78 features
associated with
the patient cli-
nical and me-
dical history,
lab reports and
metastases

* 648 samples
(424 tumors,
224 normal
tissue)

¢ Tissue micro
assays anti
Ki-67, ERG
antibodies

e Dataset from

Algorithm/Model

ML techniques
using B-mode,
shear-wave elas-
tography (SWE),
and dynamic
contrast-enhan-
ced ultrasound
(DCE-US)
radiomics

ML-based model

Al algorithm

Al algorithm

Accuracy

NA

NA

100% in identifi-
cation of ERG+
tumor

10-year OS: 87%

Sensitivity Specificity
NA NA
NA NA
NA NA

10-year OS: 60% NA

vival in patients PLCO trial 10-year cancer- 10-year cancer-
with CaP * 8776 patients specific survival:  specific survival:
(diagnosed 98% 55%
with CaP on
follow-up)
e n=7021

(training set)
N=1755 (test
set)

RCC: Renal Cell Carcinoma; CT: Computed Tomography; ANN: Artificial Neural Network; SVM: Support Vector Machine; AML: Angiomyolipoma; ML: Machine Le-
arning; SMOTE: Synthetic Minority Oversampling Technique; ccRCC: Clear Cell Renal Cell Carcinoma; MDCT: Multiple Detector Computed Tomography; DL: Deep
Learning; LR: Logistic Regression; LASSO: Least Absolute Shrinkage and Selection Operator; PBRM1: Polybromol; RF: Random Forest; CNN: Convolutional Neural
Network; MLP: Multi Layer Perceptron; Al: Artificial Intelligence; GA: Genetic Algorithm; DL-CNN: Deep Learning Convolutional Neural Network; LS-SVM: Least Squ-
are Support Vector Machine; MIBC: Muscle Invasive Bladder Cancer; KNN: K-Nearest Neighbor; GBT: Gradient-Boosted Trees; NMIBC: Non-Muscle Invasive Bladder
Cancer; CaP: Carcinoma Prostate; T2ZW MRI: T2 Weighted Magnetic Resonance Imaging; QDA: Quadratic Discriminant Analysis; NBDT: Naive Bayes Decision Trees;
TRUS: Trans Rectal Ultrasonogram; SWE: Shear-Wave Elastography; DCE-US: Dynamic Contrast-Enhanced Ultrasound; PLCO: Prostate Lung Colorectal Ovarian; OS:
Overall Survival

Gavriel et al.®” proposed an ensemble system comprising
ML-based algorithms to predict five-year prognosis with dif-
ferent combinations of image, clinical, and spatial features and
quantify potential prognostic markers related to lymphocytes,
macrophages, tumor buds, and PD-L1. The method success-
fully classified 71.4% of the patients who succumbed to muscle
invasive bladder cancer (MIBC) within five years, significantly
higher than the 28.6% of the current clinical gold standard, the
tumour, node, metastasis (TNM) staging system.

Several studies have applied ML-based algorithms and models
to identify genes that could predict the recurrence of disease or
the future progression. Slides of patients diagnosed with MIBC
were labeled with immunofluorescence (IF) and used for mea-
suring the tumor buds, to determine the effectiveness of neo-
adjuvant chemotherapy, and to identify patients who were not
responding to the treatment. This was done to stop the treatment
prematurely to avoid the adverse effects of chemotherapy.**4%!
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Prostate Carcinoma

Al applications are on the verge of revolutionizing the current
practice in carcinoma prostate (CaP) in terms of diagnosis, treat-
ment decisions, and even predicting the disease-free survival.
There is high observer-dependent variability in Gleason grading
because of the subjective nature of the analysis of biopsy speci-
mens. Considering this, Strom et al.*'! developed an Al model
for identification, Gleason grading, and localization of prostate
cancer. The model was trained with 6682 digitized slides of 976
men and tested on 1631 biopsy specimens from 246 men. It
achieved an accuracy of 0.997 (AUC) to differentiate between a
malignant and a benign tumor. The results in terms of Gleason
grading were also comparable to those achieved by the expert
pathologists. In various studies, DL methods to calculate the
Gleason Grading have been applied (Table 2).14%

Multiparametric imaging uses multiple modalities or tech-
niques before making the ultimate diagnosis, and this adds
to the burden of the radiologist. However, in the current era,
computer-aided diagnosis is possible because of progress in
Al, which eventually helps in making the diagnosis by image
interpretation. This is particularly useful in situations where
multiple modalities, parameters, or techniques are involved in
diagnosing a condition .

Application of a Quadrant Discriminant Classifier to the
radiomic features derived from T2-weighted MRI images
for detection of CaP"4 and application of ML-based random
Forrest classification algorithm to localize CaP on transrectal
ultrasonogram have been studied (Table 2).

In view of the toxic effects of docetaxel chemotherapy, 20% of
the patients undergo therapeutic failure in metastatic castrate
resistant CaP. Deng et al.**! developed an Al-based computa-
tional model that could differentiate patients in two groups,
docetaxel-tolerable and docetaxel-intolerable, for better and
individualized treatment for the patients in this category.
Identification of the presence of biomarkers on tissue microar-
rays can predict the risk of recurrence and metastasis. Biomarker
identification under IF microscope by the human eye is subjec-
tive as well as time-consuming. Hence, an automated method
using DL algorithms was developed for analysis of biomarkers
using 648 samples and IF staining with anti-Ki-67, ERG anti-
bodies. The results were promising, with only 5% difference
between manual and algorithm-based biomarker detection and
100% accuracy in identification of tumors positive for ERG."”

Bibault et al ¥ used data from the prospective clinical trial Prostate
Lung Colorectal and Ovarian cancer screening, selected patients
who were diagnosed with CaP during follow-up, and trained two
models to predict ten-year cancer-specific survival (CSS) and OS.
Of the 8776 patients diagnosed with PCa on follow-up, training of

the models was done with 7021 and tested on dataset of 1755. It
achieved an accuracy of 0.87 and 0.98 for OS and CSS, respec-
tively. These models can be used online to provide predictions and
support informed decision-making in CaP treatment.

Limitations

Al applications are gaining significant interest in urology, but
their real-world implementation still faces an uphill task. There
are limitations to some studies that use Al algorithms and its
subsets in urological diseases. The key challenges that can be
addressed before being integrated into the clinical setting are the
incorporation of standardized criteria, the correction for system
variation, and the data collection from multiple institutions in
various geographical locations, so that the results can be gener-
alized and applied to the real-world scenario.*!

Future Considerations

The President of the World Economic Forum, Klaus Schwabe,
made the following announcements at the Davos Summit just a
few years ago: “We stand on the brink of a technological revo-
lution that will fundamentally alter the way we live, work, and
relate to one another. In its scale, scope, and complexity, the
transformation will be unlike anything human kind has experi-
enced before” >

Future work will concentrate on creating larger medical data-
bases and expanding Al techniques further. The use of enhanced
algorithms will take place on smartphones or can be accessed
through the cloud. Applications for clinical decision-making
and its use in the real world require appropriate permissions
from the regulatory bodies. Issues exist concerning the reliabil-
ity of a machine diagnosis and that prejudices of programming
do not create hindrances in the diagnosis.

Conclusion

In the near future, we will see a shift in the clinical paradigm
as Al applications will find their place in the guidelines and
revolutionize the decision-making process. Having said that,
human qualities of intelligence, adaptation, and sense of duty
will prove to be important factors in further development of Al.
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